导航:首页 > 编程系统 > linuxc多线程操作

linuxc多线程操作

发布时间:2024-08-10 13:07:44

linux系统下,c语言pthread多线程编程传参问题

3个线程使用的都是同一个

代码 Info_t *info= (Info_t *)malloc(sizeof(Info_t));只创建了一个info

pthread_create(&threads[i],NULL,calMatrix,(void *)info); 三个线程使用的是同一个

我把你的代码改了下:

#include<stdio.h>
#include<stdlib.h>
#include<pthread.h>

intmtc[3]={0};//resultmatrix

typedefstruct
{
intprank;
int*mta;
int*mtb;
}Info_t;

void*calMatrix(void*arg)
{
inti;
Info_t*info=(Info_t*)arg;
intprank=info->prank;
fprintf(stdout,"calMatrix:prankis%d ",prank);

for(i=0;i<3;i++)
mtc[prank]+=info->mta[i]*info->mtb[i];

returnNULL;
}

intmain(intargc,char**argv)
{
inti,j,k=0;
intmta[3][3];
intmtb[3]={1};
Info_t*info=(Info_t*)malloc(sizeof(Info_t)*3);

for(i=0;i<3;i++)
for(j=0;j<3;j++)
mta[i][j]=k++;
/*3threads*/
pthread_t*threads=(pthread_t*)malloc(sizeof(pthread_t)*3);
fprintf(stdout," ");fflush(stdout);
for(i=0;i<3;i++)
{
info[i].prank=i;
info[i].mta=mta[i];
info[i].mtb=mtb;
pthread_create(&threads[i],NULL,calMatrix,(void*)(&info[i]));
}
for(i=0;i<3;i++)
pthread_join(threads[i],NULL);

fprintf(stdout," ====thematrixresult==== ");
fflush(stdout);

for(i=0;i<3;i++)
{
fprintf(stdout,"mtc[%d]=%d ",i,mtc[i]);
fflush(stdout);
}
return0;
}

矩阵的计算我忘记了,你运行看看结果对不对

② Linux下C语言利用多线程向链表中写值

#include #include #include typedef struct datanode {char name[24];char phone[12];// ......struct datanode *next;}*pNode,*LinkList,Node;LinkList getEmptyList() {LinkList head = (pNode)malloc(sizeof(Node));head->next = NULL;retur...

③ linux C下多线程接收数据怎么进行存储再统一处理

在Linux系统中使用C/C++进行多线程编程时,我们遇到最多的就是对同一变量的多线程读写问题,大多情况下遇到这类问题都是通过锁机制来处理,但这对程序的性能带来了很大的影响,当然对于那些系统原生支持原子操作的数据类型来说,我们可以使用原子操作来处理,这能对程序的性能会得到一定的提高。那么对于那些系统不支持原子操作的自定义数据类型,在不使用锁的情况下如何做到线程安全呢?本文将从线程局部存储方面,简单讲解处理这一类线程安全问题的方法。

一、数据类型
在C/C++程序中常存在全局变量、函数内定义的静态变量以及局部变量,对于局部变量来说,其不存在线程安全问题,因此不在本文讨论的范围之内。全局变量和函数内定义的静态变量,是同一进程中各个线程都可以访问的共享变量,因此它们存在多线程读写问题。在一个线程中修改了变量中的内容,其他线程都能感知并且能读取已更改过的内容,这对数据交换来说是非常快捷的,但是由于多线程的存在,对于同一个变量可能存在两个或两个以上的线程同时修改变量所在的内存内容,同时又存在多个线程在变量在修改的时去读取该内存值,如果没有使用相应的同步机制来保护该内存的话,那么所读取到的数据将是不可预知的,甚至可能导致程序崩溃。
如果需要在一个线程内部的各个函数调用都能访问、但其它线程不能访问的变量,这就需要新的机制来实现,我们称之为Static memory local to a thread (线程局部静态变量),同时也可称之为线程特有数据(TSD: Thread-Specific Data)或者线程局部存储(TLS: Thread-Local Storage)。这一类型的数据,在程序中每个线程都会分别维护一份变量的副本(),并且长期存在于该线程中,对此类变量的操作不影响其他线程。如下图:

二、一次性初始化
在讲解线程特有数据之前,先让我们来了解一下一次性初始化。多线程程序有时有这样的需求:不管创建多少个线程,有些数据的初始化只能发生一次。列如:在C++程序中某个类在整个进程的生命周期内只能存在一个实例对象,在多线程的情况下,为了能让该对象能够安全的初始化,一次性初始化机制就显得尤为重要了。——在设计模式中这种实现常常被称之为单例模式(Singleton)。Linux中提供了如下函数来实现一次性初始化:
#include <pthread.h>

// Returns 0 on success, or a positive error number on error
int pthread_once (pthread_once_t *once_control, void (*init) (void));
利用参数once_control的状态,函数pthread_once()可以确保无论有多少个线程调用多少次该函数,也只会执行一次由init所指向的由调用者定义的函数。init所指向的函数没有任何参数,形式如下:
void init (void)
{
// some variables initializtion in here
}
另外,参数once_control必须是pthread_once_t类型变量的指针,指向初始化为PTHRAD_ONCE_INIT的静态变量。在C++0x以后提供了类似功能的函数std::call_once (),用法与该函数类似。使用实例请参考https://github.com/ApusApp/Swift/blob/master/swift/base/singleton.hpp实现。

④ 请问linux下C编程多线程同步和异步的区别,如何能实现程序的同步和异步编程

同步和异步抄的区别:
1、同步就是说多个任务之间是有先后关系的,一个任务需要等待另一个任务执行完毕才能继续执行。
2、异步就是说多个任务之间没有先后关系,不需要相互等待各做各的事。

同步编程方法:
1、信号量
2、互斥量

异步无需考虑资源冲突,不需特别处理。

⑤ 浅谈linux 多线程编程和 windows 多线程编程的异同

首先我们讲讲为什么要采用多线程编程,其实并不是所有的程序都必须采用多线程,有些时候采用多线程,性能还没有单线程好。所以我们要搞清楚,什么时候采用多线程。采用多线程的好处如下:
(1)因为多线程彼此之间采用相同的地址空间,共享大部分的数据,这样和多进程相比,代价比较节俭,因为多进程的话,启动新的进程必须分配给它独立的地址空间,这样需要数据表来维护代码段,数据段和堆栈段等等。
(2)多线程和多进程相比,一个明显的优点就是线程之间的通信了,对不同进程来说,它们具有独立的数据空间,要进行数据的传递只能通过通信的方式进行,这种方式不仅费时,而且很不方便。但是对于多线程就不一样了。他们之间可以直接共享数据,比如最简单的方式就是共享全局变量。但是共享全部变量也要注意哦,呵呵,必须注意同步,不然后果你知道的。呵呵。
(3)在多cpu的情况下,不同的线程可以运行不同的cpu下,这样就完全并行了。
反正我觉得在这种情况下,采用多线程比较理想。比如说你要做一个任务分2个步骤,你为提高工作效率,你可以多线程技术,开辟2个线程,第一个线程就做第一步的工作,第2个线程就做第2步的工作。但是你这个时候要注意同步了。因为只有第一步做完才能做第2步的工作。这时,我们可以采用同步技术进行线程之间的通信。
针对这种情况,我们首先讲讲多线程之间的通信,在windows平台下,多线程之间通信采用的方法主要有:
(1)共享全局变量,这种方法是最容易想到的,呵呵,那就首先讲讲吧,比如说吧,上面的问题,第一步要向第2步传递收据,我们可以之间共享全局变量,让两个线程之间传递数据,这时主要考虑的就是同步了,因为你后面的线程在对数据进行操作的时候,你第一个线程又改变了数据的内容,你不同步保护,后果很严重的。你也知道,这种情况就是读脏数据了。在这种情况下,我们最容易想到的同步方法就是设置一个bool flag了,比如说在第2个线程还没有用完数据前,第一个线程不能写入。有时在2个线程所需的时间不相同的时候,怎样达到最大效率的同步,就比较麻烦了。咱们可以多开几个缓冲区进行操作。就像生产者消费者一样了。如果是2个线程一直在跑的,由于时间不一致,缓冲区迟早会溢出的。在这种情况下就要考虑了,是不让数据写入还是让数据覆盖掉老的数据,这时候就要具体问题具体分析了。就此打住,呵呵。就是用bool变量控制同步,linux 和windows是一样的。
既然讲道了这里,就再讲讲其它同步的方法。同样 针对上面的这个问题,共享全局变量同步问题。除了采用bool变量外,最容易想到的方法就是互斥量了。呵呵,也就是传说中的加锁了。windows下加锁和linux下加锁是类似的。采用互斥量进行同步,要想进入那段代码,就先必须获得互斥量。
linux上互斥量的函数是:
windows下互斥量的函数有:createmutex 创建一个互斥量,然后就是获得互斥量waitforsingleobject函数,用完了就释放互斥量ReleaseMutex(hMutex),当减到0的时候 内核会才会释放其对象。下面是windows下与互斥的几个函数原型。
HANDLE WINAPI CreateMutex(
__in LPSECURITY_ATTRIBUTES lpMutexAttributes,
__in BOOL bInitialOwner,
__in LPCTSTR lpName
);
可以可用来创建一个有名或无名的互斥量对象
第一参数 可以指向一个结构体SECURITY_ATTRIBUTES一般可以设为null;
第二参数 指当时的函数是不是感应感应状态 FALSE为当前拥有者不会创建互斥
第三参数 指明是否是有名的互斥对象 如果是无名 用null就好。
DWORD WINAPI WaitForSingleObject(
__in HANDLE hHandle,
__in DWORD dwMilliseconds
);
第一个是 创建的互斥对象的句柄。第二个是 表示将在多少时间之后返回 如果设为宏INFINITE 则不会返回 直到用户自己定义返回。
对于linux操作系统,互斥也是类似的,只是函数不同罢了。在linux下,和互斥相关的几个函数也要闪亮登场了。
pthread_mutex_init函数:初始化一个互斥锁;
pthread_mutex_destroy函数:注销一个互斥锁;
pthread_mutex_lock函数:加锁,如果不成功,阻塞等待;
pthread_mutex_unlock函数:解锁;
pthread_mutex_trylock函数:测试加锁,如果不成功就立即返回,错误码为EBUSY;
至于这些函数的用法,google上一搜,就出来了,呵呵,在这里不多讲了。windows下还有一个可以用来保护数据的方法,也是线程同步的方式
就是临界区了。临界区和互斥类似。它们之间的区别是,临界区速度快,但是它只能用来同步同一个进程内的多个线程。临界区的获取和释放函数如下:
EnterCriticalSection() 进入临界区; LeaveCriticalSection()离开临界区。 对于多线程共享内存的东东就讲到这里了。
(2)采用消息机制进行多线程通信和同步,windows下面的的消息机制的函数用的多的就是postmessage了。Linux下的消息机制,我用的较少,就不在这里说了,如果谁熟悉的,也告诉我,呵呵。
(3)windows下的另外一种线程通信方法就是事件和信号量了。同样针对我开始举得例子,2个线程同步,他们之间传递信息,可以采用事件(Event)或信号量(Semaphore),比如第一个线程完成生产的数据后,就必须告诉第2个线程,他已经把数据准备好了,你可以来取走了。第2个线程就把数据取走。呵呵,这里可以采用消息机制,当第一个线程准备好数据后,就直接postmessage给第2个线程,按理说采用postmessage一个线程就可以搞定这个问题了。呵呵,不是重点,省略不讲了。
对于linux,也有类似的方法,就是条件变量了,呵呵,这里windows和linux就有不同了。要特别讲讲才行。
对于windows,采用事件和信号量同步时候,都会使用waitforsingleobject进行等待的,这个函数的第一个参数是一个句柄,在这里可以是Event句柄,或Semaphore句柄,第2个参数就是等待的延迟,最终等多久,单位是ms,如果这个参数为INFINITE,那么就是无限等待了。释放信号量的函数为ReleaseSemaphore();释放事件的函数为SetEvent。当然使用这些东西都要初始化的。这里就不讲了。Msdn一搜,神马都出来了,呵呵。神马都是浮云!
对于linux操作系统,是采用条件变量来实现类似的功能的。Linux的条件变量一般都是和互斥锁一起使用的,主要的函数有:
pthread_mutex_lock ,
pthread_mutex_unlock,
pthread_cond_init
pthread_cond_signal
pthread_cond_wait
pthread_cond_timewait
为了和windows操作系统进行对比,我用以下表格进行比较:

对照以上表格,总结如下:
(1) Pthread_cleanup_push,Pthread_cleanup_pop:
这一对函数push和pop的作用是当出现异常退出时,做一些清除操作,即当在push和pop函数之间异常退出,包括调用pthread_exit退出,都会执行push里面的清除函数,如果有多个push,注意是是栈,先执行后面的那个函数,在执行前面的函数,但是注意当在这2个函数之间通过return 退出的话,执不执行push后的函数就看pop函数中的参数是不是为0了。还有当没有异常退出时,等同于在这里面return退出的情况,即:当pop函数参数不为0时,执行清除操作,当pop函数参数为0时,不执行push函数中的清除函数。
(2)linux的pthread_cond_signal和SetEvent的不同点
Pthread_cond_singal释放信号后,当没有Pthread_cond_wait,信号马上复位了,这点和SetEvent不同,SetEvent是不会复位的。详解如下:
条件变量的置位和复位有2种常用模型:第一种模型是当条件变量置位时(signaled)以后,如果当前没有线程在等待,其状态会保持为置位(signaled),直到有等待的线程进入被触发,其状态才会变为unsignaled,这种模型以采用Windows平台上的Auto-set Event 为代表。
第2种模型则是Linux平台的pthread所采用的模型,当条件变量置位(signaled)以后,即使当前没有任何线程在等待,其状态也会恢复为复位(unsignaled)状态。
条件变量在Linux平台上的这种模型很难说好坏,在实际应用中,我们可以对
代码稍加改进就可以避免这种差异的发生。由于这种差异只会发生在触发没有被线程等待在条件变量的时刻,因此我们只需要掌握好触发的时机即可。最简单的做法是增加一个计数器记录等待线程的个数,在决定触发条件变量前检查该变量即可。
示例 使用 pthread_cond_wait() 和 pthread_cond_signal()
pthread_mutex_t count_lock;
pthread_cond_t count_nonzero;
unsigned count;
decrement_count()
{
pthread_mutex_lock(&count_lock);
while (count == 0)
pthread_cond_wait(&count_nonzero, &count_lock);
count = count - 1;
pthread_mutex_unlock(&count_lock);
}
increment_count()
{
pthread_mutex_lock(&count_lock);
if (count == 0)
pthread_cond_signal(&count_nonzero);
count = count + 1;
pthread_mutex_unlock(&count_lock);
}
(3) 注意Pthread_cond_wait条件返回时互斥锁的解锁问题
extern int pthread_cond_wait __P ((pthread_cond_t *__cond,pthread_mutex_t *__mutex));
调用这个函数时,线程解开mutex指向的锁并被条件变量cond阻塞。线程可以被函数pthread_cond_signal和函数 pthread_cond_broadcast唤醒线程被唤醒后,它将重新检查判断条件是否满足,如果还不满足,一般说来线程应该仍阻塞在这里,被等待被下一次唤醒。如果在多线程中采用pthread_cond_wait来等待时,会首先释放互斥锁,当等待的信号到来时,再次获得互斥锁,因此在之后要注意手动解锁。举例如下:
#include
#include
#include
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; /*初始化互斥锁*/
pthread_cond_t cond = PTHREAD_COND_INITIALIZER; //初始化条件变量
void *thread1(void *);
void *thread2(void *);
int i=1;
int main(void)
{
pthread_t t_a;
pthread_t t_b;
pthread_create(&t_a,NULL,thread1,(void *)NULL);/*创建进程t_a*/
pthread_create(&t_b,NULL,thread2,(void *)NULL); /*创建进程t_b*/
pthread_join(t_b, NULL);/*等待进程t_b结束*/
pthread_mutex_destroy(&mutex);
pthread_cond_destroy(&cond);
exit(0);
}
void *thread1(void *junk)
{
for(i=1;i<=9;i++)
{
printf("IN one\n");
pthread_mutex_lock(&mutex);//
if(i%3==0)
pthread_cond_signal(&cond);/*,发送信号,通知t_b进程*/
else
printf("thead1:%d\n",i);
pthread_mutex_unlock(&mutex);//*解锁互斥量*/
printf("Up Mutex\n");
sleep(3);
}
}
void *thread2(void *junk)
{
while(i<9)
{
printf("IN two \n");
pthread_mutex_lock(&mutex);
if(i%3!=0)
pthread_cond_wait(&cond,&mutex);/*等待*/
printf("thread2:%d\n",i);
pthread_mutex_unlock(&mutex);
printf("Down Mutex\n");
sleep(3);
}
}
输出如下:
IN one
thead1:1
Up Mutex
IN two
IN one
thead1:2
Up Mutex
IN one
thread2:3
Down Mutex
Up Mutex
IN one
thead1:4
Up Mutex
IN two
IN one
thead1:5
Up Mutex
IN one
Up Mutex
thread2:6
Down Mutex
IN two
thread2:6
Down Mutex
IN one
thead1:7
Up Mutex
IN one
thead1:8
Up Mutex
IN two
IN one
Up Mutex
thread2:9
Down Mutex
注意蓝色的地方,有2个thread2:6,其实当这个程序多执行几次,i=3和i=6时有可能多打印几个,这里就是竞争锁造成的了。
(4)另外要注意的Pthread_cond_timedwait等待的是绝对时间,这个和WaitForSingleObject是不同的,Pthread_cond_timedwait在网上也有讨论。如下:这个问题比较经典,我把它搬过来。
thread_a :
pthread_mutex_lock(&mutex);
//do something
pthread_mutex_unlock(&mutex)
thread_b:
pthread_mutex_lock(&mutex);
//do something
pthread_cond_timedwait(&cond, &mutex, &tm);
pthread_mutex_unlock(&mutex)
有如上两个线程thread_a, thread_b,现在如果a已经进入了临界区,而b同时超时了,那么b会从pthread_cond_timedwait返回吗?如果能返回,那岂不是a,b都在临界区?如果不能返回,那pthread_cond_timedwait的定时岂不是就不准了?
大家讨论有价值的2点如下:
(1) pthread_cond_timedwait (pthread_cond_t *cv, pthread_mutex_t *external_mutex, const struct timespec *abstime) -- This function is a time-based variant of pthread_cond_wait. It waits up to abstime amount of time for cv to be notified. If abstime elapses before cv is notified, the function returns back to the caller with an ETIME result, signifying that a timeout has occurred. Even in the case of timeouts, the external_mutex will be locked when pthread_cond_timedwait returns.
(2) 2.1 pthread_cond_timedwait行为和pthread_cond_wait一样,在返回的时候都要再次lock mutex.
2 .2pthread_cond_timedwait所谓的如果没有等到条件变量,超时就返回,并不确切。
如果pthread_cond_timedwait超时到了,但是这个时候不能lock临界区,pthread_cond_timedwait并不会立即返回,但是在pthread_cond_timedwait返回的时候,它仍在临界区中,且此时返回值为ETIMEDOUT。
关于pthread_cond_timedwait超时返回的问题,我也认同观点2。
附录:
int pthread_create(pthread_t *restrict tidp,const pthread_attr_t *restrict_attr,void*(*start_rtn)(void*),void *restrict arg);
返回值:若成功则返回0,否则返回出错编号
返回成功时,由tidp指向的内存单元被设置为新创建线程的线程ID。attr参数用于制定各种不同的线程属性。新创建的线程从start_rtn函数的地址开始运行,该函数只有一个无指针参数arg,如果需要向start_rtn函数传递的参数不止一个,那么需要把这些参数放到一个结构中,然后把这个结构的地址作为arg的参数传入。
linux下用C开发多线程程序,Linux系统下的多线程遵循POSIX线程接口,称为pthread。
由 restrict 修饰的指针是最初唯一对指针所指向的对象进行存取的方法,仅当第二个指针基于第一个时,才能对对象进行存取。对对象的存取都限定于基于由 restrict 修饰的指针表达式中。 由 restrict 修饰的指针主要用于函数形参,或指向由 malloc() 分配的内存空间。restrict 数据类型不改变程序的语义。 编译器能通过作出 restrict 修饰的指针是存取对象的唯一方法的假设,更好地优化某些类型的例程。
第一个参数为指向线程标识符的指针。
第二个参数用来设置线程属性。
第三个参数是线程运行函数的起始地址。
第四个参数是运行函数的参数。
因为pthread不是linux系统的库,所以在编译时注意加上-lpthread参数,以调用静态链接库。
终止线程:
如果在进程中任何一个线程中调用exit或_exit,那么整个进行会终止,线程正常的退出方式有:
(1) 线程从启动例程中返回(return)
(2) 线程可以被另一个进程终止(kill);
(3) 线程自己调用pthread_exit函数
#include
pthread_exit
线程等待:
int pthread_join(pthread_t tid,void **rval_ptr)
函数pthread_join用来等待一个线程的结束。函数原型为:
extern int pthread_join __P (pthread_t __th, void **__thread_return);
第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。这个函数是一个线程阻塞的函数,调用它的函数将一直等待到被等待的线程结束为止,当函数返回时,被等待线程的资源被收回。
对于windows线程的创建东西,就不列举了,msdn上 一搜就出来了。呵呵。今天就讲到这里吧,希望是抛砖引玉,大家一起探讨,呵呵。部分内容我也是参考internet的,特此对原作者表示感谢!

阅读全文

与linuxc多线程操作相关的资料

热点内容
什么是数字图像的数据量 浏览:763
使用什么软件可以对plc进行编程 浏览:131
广电网络绿色缴费通道 浏览:247
iphone4s麦克风 浏览:845
怎么用cmd运行java路径 浏览:318
2014年日历下载word 浏览:198
微信个人转发量统计 浏览:196
怎么样将app里按钮变大 浏览:769
狼蛛鼠找不到配置文件 浏览:845
土豪金编程器软件打不开什么原因 浏览:957
备分数据换SD片是什么意思 浏览:666
jmp数据分析时主要看哪些参数 浏览:59
js循环 浏览:505
大数据大二学生可以做哪些实习 浏览:567
微信上没有小程序选项 浏览:839
电脑桌面的excel文件不显示图标 浏览:992
ios无法绑定支付宝支付密码 浏览:6
linux文件系统叫什么 浏览:721
在wps中文件找不到了 浏览:59
大数据涉及哪些行业 浏览:215

友情链接