比如服务器 serA, 客户端列来表为 client1~clientN, 那么我源在服务器上遍历client1~clientN发送一段数据,把client1 收到这段数据的时间 和 clientN收到这段数据的时间 差记录下来。
问题:
现在的问题是,需要几万个客户端作为测试基准,但如果简单得在一台机器上写个客户端程序然后开启来测试似乎有点问题。 请问有没有好的办法,或者工具看
------解决方案--------------------
线程池,同时开辟几百个上千和线程,每个线程一个客户端
------解决方案--------------------
tcp连接一台电脑最多可以达到 65535 。估计你需要添加电脑了
㈡ 有人说linux的TCP连接数量最大不能超过65535个吗,是真的吗
linux的TCP连接数量最大不能超过65535个,这种说法是错误的。
基于以上的原因,在Linux操作系统中,对TCP连接数量的限制依次有:端口数量限制,网络核心限制,最大文件数量限制(因为每建立一个连接就要打开一个文件),防火墙限制,用户打开文件限制。但并不存在65535这个数量限制。
㈢ linux下怎么设置tcp
Socket的send函数在执行时报EAGAIN的错误 当客户通过Socket提供的send函数发送大的数据包时,就可能返回一个EGGAIN的错误。该错误产生的原因是由于send 函数中的size变量大小超过了tcp_sendspace的值。tcp_sendspace定义了应用在调用send之前能够在kernel中缓存的数据量。当应用程序在socket中设置了O_NDELAY或者O_NONBLOCK属性后,如果发送缓存被占满,send就会返回EAGAIN的错误。 为了消除该错误,有三种方法可以选择: 1.调大tcp_sendspace,使之大于send中的size参数 ---no -p -o tcp_sendspace=65536 2.在调用send前,在setsockopt函数中为SNDBUF设置更大的值 3.使用write替代send,因为write没有设置O_NDELAY或者O_NONBLOCK 1. tcp 收发缓冲区默认值 [root@qljt core]# cat /proc/sys/net/ipv4/tcp_rmem 4096 87380 4161536 87380 :tcp接收缓冲区的默认值 [root@qljt core]# cat /proc/sys/net/ipv4/tcp_wmem 4096 16384 4161536 16384 : tcp 发送缓冲区的默认值 2. tcp 或udp收发缓冲区最大值 [root@qljt core]# cat /proc/sys/net/core/rmem_max 131071 131071:tcp 或 udp 接收缓冲区最大可设置值的一半。 也就是说调用 setsockopt(s, SOL_SOCKET, SO_RCVBUF, &rcv_size, &optlen); 时rcv_size 如果超过 131071,那么 getsockopt(s, SOL_SOCKET, SO_RCVBUF, &rcv_size, &optlen); 去到的值就等于 131071 * 2 = 262142 [root@qljt core]# cat /proc/sys/net/core/wmem_max 131071 131071:tcp 或 udp 发送缓冲区最大可设置值得一半。 跟上面同一个道理 3. udp收发缓冲区默认值 [root@qljt core]# cat /proc/sys/net/core/rmem_default 111616:udp接收缓冲区的默认值 [root@qljt core]# cat /proc/sys/net/core/wmem_default 111616 111616:udp发送缓冲区的默认值 . tcp 或udp收发缓冲区最小值 tcp 或udp接收缓冲区的最小值为 256 bytes,由内核的宏决定; tcp 或udp发送缓冲区的最小值为 2048 bytes,由内核的宏决定 setsockopt设置socket状态 1.closesocket(一般不会立即关闭而经历TIME_WAIT的过程)后想继续重用该socket: BOOL bReuseaddr=TRUE; setsockopt(s,SOL_SOCKET ,SO_REUSEADDR,(const char*)&bReuseaddr,sizeof(BOOL)); 2. 如果要已经处于连接状态的soket在调用closesocket后强制关闭,不经历TIME_WAIT的过程: BOOL bDontLinger = FALSE; setsockopt(s,SOL_SOCKET,SO_DONTLINGER,(const char*)&bDontLinger,sizeof(BOOL)); 3.在send(),recv()过程中有时由于网络状况等原因,发收不能预期进行,而设置收发时限: int nNetTimeout=1000;//1秒 //发送时限 setsockopt(socket,SOL_S0CKET,SO_SNDTIMEO,(char *)&nNetTimeout,sizeof(int)); //接收时限 setsockopt(socket,SOL_S0CKET,SO_RCVTIMEO,(char *)&nNetTimeout,sizeof(int)); 4.在send()的时候,返回的是实际发送出去的字节(同步)或发送到socket缓冲区的字节(异步);系统默认的状态发送和接收一次为8688字节(约为8.5K);在实际的过程中发送数据 和接收数据量比较大,可以设置socket缓冲区,而避免了send(),recv()不断的循环收发: // 接收缓冲区 int nRecvBuf=32*1024;//设置为32K setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char*)&nRecvBuf,sizeof(int)); //发送缓冲区 int nSendBuf=32*1024;//设置为32K setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char*)&nSendBuf,sizeof(int)); 5. 如果在发送数据的时,希望不经历由系统缓冲区到socket缓冲区的拷贝而影响程序的性能: int nZero=0; setsockopt(socket,SOL_S0CKET,SO_SNDBUF,(char *)&nZero,sizeof(nZero)); 6.同上在recv()完成上述功能(默认情况是将socket缓冲区的内容拷贝到系统缓冲区): int nZero=0; setsockopt(socket,SOL_S0CKET,SO_RCVBUF,(char *)&nZero,sizeof(int)); 7.一般在发送UDP数据报的时候,希望该socket发送的数据具有广播特性: BOOL bBroadcast=TRUE; setsockopt(s,SOL_SOCKET,SO_BROADCAST,(const char*)&bBroadcast,sizeof(BOOL)); 8.在client连接服务器过程中,如果处于非阻塞模式下的socket在connect()的过程中可以设置connect()延时,直到accpet()被呼叫(本函数设置只有在非阻塞的过程中有显著的 作用,在阻塞的函数调用中作用不大) BOOL bConditionalAccept=TRUE; setsockopt(s,SOL_SOCKET,SO_CONDITIONAL_ACCEPT,(const char*)&bConditionalAccept,sizeof(BOOL)); 9.如果在发送数据的过程中(send()没有完成,还有数据没发送)而调用了closesocket(),以前我们一般采取的措施是"从容关闭"shutdown(s,SD_BOTH),但是数据是肯定丢失了,如何设置让程序满足具体应用的要求(即让没发完的数据发送出去后在关闭socket)? struct linger { u_short l_onoff; u_short l_linger; }; linger m_sLinger; m_sLinger.l_onoff=1;//(在closesocket()调用,但是还有数据没发送完毕的时候容许逗留) // 如果m_sLinger.l_onoff=0;则功能和2.)作用相同; m_sLinger.l_linger=5;//(容许逗留的时间为5秒) setsockopt(s,SOL_SOCKET,SO_LINGER,(const char*)&m_sLinger,sizeof(linger)); 设置套接口的选项。 #include <winsock.h> int PASCAL FAR setsockopt( SOCKET s, int level, int optname, const char FAR* optval, int optlen); s:标识一个套接口的描述字。 level:选项定义的层次;目前仅支持SOL_SOCKET和IPPROTO_TCP层次。 optname:需设置的选项。 optval:指针,指向存放选项值的缓冲区。 optlen:optval缓冲区的长度。 注释: setsockopt()函数用于任意类型、任意状态套接口的设置选项值。尽管在不同协议层上存在选项,但本函数仅定义了最高的“套接口”层次上的选项。选项影响套接口的操作,诸如加急数据是否在普通数据流中接收,广播数据是否可以从套接口发送等等。 有两种套接口的选项:一种是布尔型选项,允许或禁止一种特性;另一种是整形或结构选项。允许一个布尔型选项,则将optval指向非零整形数;禁止一个选项optval指向一个等于零的整形数。对于布尔型选项,optlen应等于sizeof(int);对其他选项,optval指向包含所需选项的整形数或结构,而optlen则为整形数或结构的长度。SO_LINGER选项用于控制下述情况的行动:套接口上有排队的待发送数据,且 closesocket()调用已执行。参见closesocket()函数中关于SO_LINGER选项对closesocket()语义的影响。应用程序通过创建一个linger结构来设置相应的操作特性: struct linger { int l_onoff; int l_linger; }; 为了允许SO_LINGER,应用程序应将l_onoff设为非零,将l_linger设为零或需要的超时值(以秒为单位),然后调用setsockopt()。为了允许SO_DONTLINGER(亦即禁止SO_LINGER),l_onoff应设为零,然后调用setsockopt()。 缺省条件下,一个套接口不能与一个已在使用中的本地地址捆绑(参见bind())。但有时会需要“重用”地址。因为每一个连接都由本地地址和远端地址的组合唯一确定,所以只要远端地址不同,两个套接口与一个地址捆绑并无大碍。为了通知WINDOWS套接口实现不要因为一个地址已被一个套接口使用就不让它与另一个套接口捆绑,应用程序可在bind()调用前先设置SO_REUSEADDR选项。请注意仅在bind()调用时该选项才被解释;故此无需(但也无害)将一个不会共用地址的套接口设置该选项,或者在bind()对这个或其他套接口无影响情况下设置或清除这一选项。 一个应用程序可以通过打开SO_KEEPALIVE选项,使得WINDOWS套接口实现在TCP连接情况下允许使用“保持活动”包。一个WINDOWS套接口实现并不是必需支持“保持活动”,但是如果支持的话,具体的语义将与实现有关,应遵守RFC1122“Internet主机要求-通讯层”中第 4.2.3.6节的规范。如果有关连接由于“保持活动”而失效,则进行中的任何对该套接口的调用都将以WSAENETRESET错误返回,后续的任何调用将以WSAENOTCONN错误返回。 TCP_NODELAY选项禁止Nagle算法。Nagle算法通过将未确认的数据存入缓冲区直到蓄足一个包一起发送的方法,来减少主机发送的零碎小数据包的数目。但对于某些应用来说,这种算法将降低系统性能。所以TCP_NODELAY可用来将此算法关闭。应用程序编写者只有在确切了解它的效果并确实需要的情况下,才设置TCP_NODELAY选项,因为设置后对网络性能有明显的负面影响。TCP_NODELAY是唯一使用IPPROTO_TCP层的选项,其他所有选项都使用SOL_SOCKET层。 如果设置了SO_DEBUG选项,WINDOWS套接口供应商被鼓励(但不是必需)提供输出相应的调试信息。但产生调试信息的机制以及调试信息的形式已超出本规范的讨论范围。 setsockopt()支持下列选项。其中“类型”表明optval所指数据的类型。 选项 类型 意义 SO_BROADCAST BOOL 允许套接口传送广播信息。 SO_DEBUG BOOL 记录调试信息。 SO_DONTLINER BOOL 不要因为数据未发送就阻塞关闭操作。设置本选项相当于将SO_LINGER的l_onoff元素置为零。 SO_DONTROUTE BOOL 禁止选径;直接传送。 SO_KEEPALIVE BOOL 发送“保持活动”包。 SO_LINGER struct linger FAR* 如关闭时有未发送数据,则逗留。 SO_OOBINLINE BOOL 在常规数据流中接收带外数据。 SO_RCVBUF int 为接收确定缓冲区大小。 SO_REUSEADDR BOOL 允许套接口和一个已在使用中的地址捆绑(参见bind())。 SO_SNDBUF int 指定发送缓冲区大小。 TCP_NODELAY BOOL 禁止发送合并的Nagle算法。 setsockopt()不支持的BSD选项有: 选项名 类型 意义 SO_ACCEPTCONN BOOL 套接口在监听。 SO_ERROR int 获取错误状态并清除。 SO_RCVLOWAT int 接收低级水印。 SO_RCVTIMEO int 接收超时。 SO_SNDLOWAT int 发送低级水印。 SO_SNDTIMEO int 发送超时。 SO_TYPE int 套接口类型。 IP_OPTIONS 在IP头中设置选项。 返回值: 若无错误发生,setsockopt()返回0。否则的话,返回SOCKET_ERROR错误,应用程序可通过WSAGetLastError()获取相应错误代码。 错误代码: WSANOTINITIALISED:在使用此API之前应首先成功地调用WSAStartup()。 WSAENETDOWN:WINDOWS套接口实现检测到网络子系统失效。 WSAEFAULT:optval不是进程地址空间中的一个有效部分。 WSAEINPROGRESS:一个阻塞的WINDOWS套接口调用正在运行中。 WSAEINVAL:level值非法,或optval中的信息非法。 WSAENETRESET:当SO_KEEPALIVE设置后连接超时。 WSAENOPROTOOPT:未知或不支持选项。其中,SOCK_STREAM类型的套接口不支持SO_BROADCAST选项,SOCK_DGRAM 类型的套接口不支持SO_DONTLINGER 、SO_KEEPALIVE、SO_LINGER和SO_OOBINLINE选项。 WSAENOTCONN:当设置SO_KEEPALIVE后连接被复位。 WSAENOTSOCK:描述字不是一个套接口。
㈣ Linux系统支持的最大TCP连接是多少
这个文件是一个综合性的问题。首先就tcp链接来说吧,主要体现在tcp的socket链接数回上面,65535 应该是足够答用了,但是tcp连接11种状态,不同不同状态有可能有会话保持什么的。这些暂且不说,现在tcp连接的还有Linux下文件的最大打开数量,流量带宽等等。
优化:
1.ulimit -a 查看最大文件打开数量,然后修改
2.减少tcp长连接,或其他状态链接,可以改下会话保持时间,主动自动关闭(不建议),重复使用tcp等。这个是在tcp链接数来进行考虑。
3.增多IP,增多端口,一个IP是这么多,那可以在一台Linux上绑定多个IP来增加链接数。
㈤ linux下tcp通信怎么限制客户端的连接数量
listen的backlog参数指定的是已经三次握手完成,达到了established状态但是等待accept的队列的容量。当这个专容量超过上限的时候服务器端属便不处理客户端的三次握手了。这个队列的容量当然不是楼主所说的并发连接数。
但是lisen的再后一道程序便是accept了。如果你想要的是在tcp并发连接数量超过上限的时候服务器不再处理了三次握手那么只有两种办法:
1.关闭listen的socket
2.自己修改tcp协议栈的实现,当然这个就比较麻烦了。
用iptables防火墙来限制tcp连接,
如下,限制用户的tcp连接数为50
iptables -I INPUT-p tcp -m connlimit --connlimit-above 50 -j REJECT
㈥ 求教服务器tcp连接数被占满的有关问题
我问了在约APP的专家,修改上述限制的最简单的办法就是使用ulimit命令:
[speng@as4 ~]$ ulimit -n
上述命令中,在中指定要设置的单一进程允许打开的最大文件数。如果系统回显类似于“Operation notpermitted”之类的话,说明上述限制修改失败,实际上是因为在中指定的数值超过了Linux系统对该用户打开文件数的软限制或硬限制。因此,就需要修改Linux系统对用户的关于打开文件数的软限制和硬限制。
第一步,修改/etc/security/limits.conf文件,在文件中添加如下行:
speng soft nofile 10240
speng hard nofile 10240
其中speng指定了要修改哪个用户的打开文件数限制,可用’*'号表示修改所有用户的限制;soft或hard指定要修改软限制还是硬限制;10240则指定了想要修改的新的限制值,即最大打开文件数(请注意软限制值要小于或等于硬限制)。修改完后保存文件。
第二步,修改/etc/pam.d/login文件,在文件中添加如下行:
session required /lib/security/pam_limits.so
这是告诉Linux在用户完成系统登录后,应该调用pam_limits.so模块来设置系统对该用户可使用的各种资源数量的最大限制(包括用户可打开的最大文件数限制),而pam_limits.so模块就会从/etc/security/limits.conf文件中读取配置来设置这些限制值。修改完后保存此文件。
第三步,查看Linux系统级的最大打开文件数限制,使用如下命令:
[speng@as4 ~]$ cat /proc/sys/fs/file-max
12158
这表明这台Linux系统最多允许同时打开(即包含所有用户打开文件数总和)12158个文件,是Linux系统级硬限制,所有用户级的打开文件数限制都不应超过这个数值。通常这个系统级硬限制是Linux系统在启动时根据系统硬件资源状况计算出来的最佳的最大同时打开文件数限制,如果没有特殊需要,不应该修改此限制,除非想为用户级打开文件数限制设置超过此限制的值。修改此硬限制的方法是修改/etc/rc.local脚本,在脚本中添加如下行:
echo 22158 > /proc/sys/fs/file-max
这是让Linux在启动完成后强行将系统级打开文件数硬限制设置为22158。修改完后保存此文件。
完成上述步骤后重启系统,一般情况下就可以将Linux系统对指定用户的单一进程允许同时打开的最大文件数限制设为指定的数值。如果重启后用 ulimit-n命令查看用户可打开文件数限制仍然低于上述步骤中设置的最大值,这可能是因为在用户登录脚本/etc/profile中使用ulimit -n命令已经将用户可同时打开的文件数做了限制。由于通过ulimit-n修改系统对用户可同时打开文件的最大数限制时,新修改的值只能小于或等于上次 ulimit-n设置的值,因此想用此命令增大这个限制值是不可能的。所以,如果有上述问题存在,就只能去打开/etc/profile脚本文件,在文件中查找是否使用了ulimit-n限制了用户可同时打开的最大文件数量,如果找到,则删除这行命令,或者将其设置的值改为合适的值,然后保存文件,用户退出并重新登录系统即可。
通过上述步骤,就为支持高并发TCP连接处理的通讯处理程序解除关于打开文件数量方面的系统限制。
2、修改网络内核对TCP连接的有关限制(参考对比下篇文章“优化内核参数”)
在Linux上编写支持高并发TCP连接的客户端通讯处理程序时,有时会发现尽管已经解除了系统对用户同时打开文件数的限制,但仍会出现并发TCP连接数增加到一定数量时,再也无法成功建立新的TCP连接的现象。出现这种现在的原因有多种。
第一种原因可能是因为Linux网络内核对本地端口号范围有限制。此时,进一步分析为什么无法建立TCP连接,会发现问题出在connect()调用返回失败,查看系统错误提示消息是“Can’t assign requestedaddress”。同时,如果在此时用tcpmp工具监视网络,会发现根本没有TCP连接时客户端发SYN包的网络流量。这些情况说明问题在于本地Linux系统内核中有限制。其实,问题的根本原因在于Linux内核的TCP/IP协议实现模块对系统中所有的客户端TCP连接对应的本地端口号的范围进行了限制(例如,内核限制本地端口号的范围为1024~32768之间)。当系统中某一时刻同时存在太多的TCP客户端连接时,由于每个TCP客户端连接都要占用一个唯一的本地端口号(此端口号在系统的本地端口号范围限制中),如果现有的TCP客户端连接已将所有的本地端口号占满,则此时就无法为新的TCP客户端连接分配一个本地端口号了,因此系统会在这种情况下在connect()调用中返回失败,并将错误提示消息设为“Can’t assignrequested address”。有关这些控制逻辑可以查看Linux内核源代码,以linux2.6内核为例,可以查看tcp_ipv4.c文件中如下函数:
static int tcp_v4_hash_connect(struct sock *sk)
请注意上述函数中对变量sysctl_local_port_range的访问控制。变量sysctl_local_port_range的初始化则是在tcp.c文件中的如下函数中设置:
void __init tcp_init(void)
内核编译时默认设置的本地端口号范围可能太小,因此需要修改此本地端口范围限制。
第一步,修改/etc/sysctl.conf文件,在文件中添加如下行:
net.ipv4.ip_local_port_range = 1024 65000
这表明将系统对本地端口范围限制设置为1024~65000之间。请注意,本地端口范围的最小值必须大于或等于1024;而端口范围的最大值则应小于或等于65535。修改完后保存此文件。
第二步,执行sysctl命令:
[speng@as4 ~]$ sysctl -p
如果系统没有错误提示,就表明新的本地端口范围设置成功。如果按上述端口范围进行设置,则理论上单独一个进程最多可以同时建立60000多个TCP客户端连接。
第二种无法建立TCP连接的原因可能是因为Linux网络内核的IP_TABLE防火墙对最大跟踪的TCP连接数有限制。此时程序会表现为在 connect()调用中阻塞,如同死机,如果用tcpmp工具监视网络,也会发现根本没有TCP连接时客户端发SYN包的网络流量。由于 IP_TABLE防火墙在内核中会对每个TCP连接的状态进行跟踪,跟踪信息将会放在位于内核内存中的conntrackdatabase中,这个数据库的大小有限,当系统中存在过多的TCP连接时,数据库容量不足,IP_TABLE无法为新的TCP连接建立跟踪信息,于是表现为在connect()调用中阻塞。此时就必须修改内核对最大跟踪的TCP连接数的限制,方法同修改内核对本地端口号范围的限制是类似的:
第一步,修改/etc/sysctl.conf文件,在文件中添加如下行:
net.ipv4.ip_conntrack_max = 10240
这表明将系统对最大跟踪的TCP连接数限制设置为10240。请注意,此限制值要尽量小,以节省对内核内存的占用。
第二步,执行sysctl命令:
[speng@as4 ~]$ sysctl -p
如果系统没有错误提示,就表明系统对新的最大跟踪的TCP连接数限制修改成功。如果按上述参数进行设置,则理论上单独一个进程最多可以同时建立10000多个TCP客户端连接。
3、使用支持高并发网络I/O的编程技术
在Linux上编写高并发TCP连接应用程序时,必须使用合适的网络I/O技术和I/O事件分派机制。
可用的I/O技术有同步I/O,非阻塞式同步I/O(也称反应式I/O),以及异步I/O。在高TCP并发的情形下,如果使用同步I/O,这会严重阻塞程序的运转,除非为每个TCP连接的I/O创建一个线程。但是,过多的线程又会因系统对线程的调度造成巨大开销。因此,在高TCP并发的情形下使用同步 I/O是不可取的,这时可以考虑使用非阻塞式同步I/O或异步I/O。非阻塞式同步I/O的技术包括使用select(),poll(),epoll等机制。异步I/O的技术就是使用AIO。
从I/O事件分派机制来看,使用select()是不合适的,因为它所支持的并发连接数有限(通常在1024个以内)。如果考虑性能,poll()也是不合适的,尽管它可以支持的较高的TCP并发数,但是由于其采用“轮询”机制,当并发数较高时,其运行效率相当低,并可能存在I/O事件分派不均,导致部分TCP连接上的I/O出现“饥饿”现象。而如果使用epoll或AIO,则没有上述问题(早期Linux内核的AIO技术实现是通过在内核中为每个 I/O请求创建一个线程来实现的,这种实现机制在高并发TCP连接的情形下使用其实也有严重的性能问题。但在最新的Linux内核中,AIO的实现已经得到改进)。
综上所述,在开发支持高并发TCP连接的Linux应用程序时,应尽量使用epoll或AIO技术来实现并发的TCP连接上的I/O控制,这将为提升程序对高并发TCP连接的支持提供有效的I/O保证。
内核参数sysctl.conf的优化
/etc/sysctl.conf 是用来控制linux网络的配置文件,对于依赖网络的程序(如web服务器和cache服务器)非常重要,RHEL默认提供的最好调整。
推荐配置(把原/etc/sysctl.conf内容清掉,把下面内容复制进去):
net.ipv4.ip_local_port_range = 1024 65536
net.core.rmem_max=16777216
net.core.wmem_max=16777216
net.ipv4.tcp_rmem=4096 87380 16777216
net.ipv4.tcp_wmem=4096 65536 16777216
net.ipv4.tcp_fin_timeout = 10
net.ipv4.tcp_tw_recycle = 1
net.ipv4.tcp_timestamps = 0
net.ipv4.tcp_window_scaling = 0
net.ipv4.tcp_sack = 0
net.core.netdev_max_backlog = 30000
net.ipv4.tcp_no_metrics_save=1
net.core.somaxconn = 262144
net.ipv4.tcp_syncookies = 0
net.ipv4.tcp_max_orphans = 262144
net.ipv4.tcp_max_syn_backlog = 262144
net.ipv4.tcp_synack_retries = 2
net.ipv4.tcp_syn_retries = 2
这个配置参考于cache服务器varnish的推荐配置和SunOne 服务器系统优化的推荐配置。
varnish调优推荐配置的地址为:http://varnish.projects.linpro.no/wiki/Performance
不过varnish推荐的配置是有问题的,实际运行表明“net.ipv4.tcp_fin_timeout = 3”的配置会导致页面经常打不开;并且当网友使用的是IE6浏览器时,访问网站一段时间后,所有网页都会打不开,重启浏览器后正常。可能是国外的网速快吧,我们国情决定需要调整“net.ipv4.tcp_fin_timeout = 10”,在10s的情况下,一切正常(实际运行结论)。
修改完毕后,执行:
/sbin/sysctl -p /etc/sysctl.conf
/sbin/sysctl -w net.ipv4.route.flush=1
命令生效。为了保险起见,也可以reboot系统。
调整文件数:
linux系统优化完网络必须调高系统允许打开的文件数才能支持大的并发,默认1024是远远不够的。
执行命令:
Shell代码
echo ulimit -HSn 65536 >> /etc/rc.local
echo ulimit -HSn 65536 >>/root/.bash_profile
ulimit -HSn 65536