① 如何编写linux下Nand Flash驱动
1. 对于驱动框架部分
其实,要了解,关于驱动框架部分,你所要做的事情的话,只要看看三星的整个 flash驱动中的这个结构体,就差不多了:
static struct platform_driver s3c2410_nand_driver = {
.probe = s3c2410_nand_probe,
.remove = s3c2410_nand_remove,
.suspend = s3c24xx_nand_suspend,
.resume = s3c24xx_nand_resume,
.driver = {
.name = "s3c2410-nand",
.owner = THIS_MODULE,
},
};
对于上面这个结构体,没多少要解释的。从名字,就能看出来:
(1)probe就是系统“探测”,就是前面解释的整个过程,这个过程中的多数步骤,都是和你自己的nand flash相关的,尤其是那些硬件初始化部分,是你必须要自己实现的。
(2)remove,就是和probe对应的,“反初始化”相关的动作。主要是释放系统相关资源和关闭硬件的时钟等常见操作了。
(3)suspend和resume,对于很多没用到电源管理的情况下,至少对于我们刚开始写基本的驱动的时候,可以不用关心,放个空函数即可。
2. 对于nand flash底层操作实现部分
而对于底层硬件操作的有些函数,总体上说,都可以在上面提到的s3c2410_nand_init_chip中找到:
static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
struct s3c2410_nand_mtd *nmtd,
struct s3c2410_nand_set *set)
{
struct nand_chip *chip = &nmtd->chip;
void __iomem *regs = info->regs;
chip->write_buf = s3c2410_nand_write_buf;
chip->read_buf = s3c2410_nand_read_buf;
chip->select_chip = s3c2410_nand_select_chip;
chip->chip_delay = 50;
chip->priv = nmtd;
chip->options = 0;
chip->controller = &info->controller;
switch (info->cpu_type) {
case TYPE_S3C2410:
/* nand flash控制器中,一般都有对应的数据寄存器,用于给你往里面写数据,表示将要读取或写入多少个字节(byte,u8)/字(word,u32),所以,此处,你要给出地址,以便后面的操作所使用 */
chip->IO_ADDR_W = regs + S3C2410_NFDATA;
info->sel_reg = regs + S3C2410_NFCONF;
info->sel_bit = S3C2410_NFCONF_nFCE;
chip->cmd_ctrl = s3c2410_nand_hwcontrol;
chip->dev_ready = s3c2410_nand_devready;
break;
。。。。。。
}
chip->IO_ADDR_R = chip->IO_ADDR_W;
nmtd->info = info;
nmtd->mtd.priv = chip;
nmtd->mtd.owner = THIS_MODULE;
nmtd->set = set;
if (hardware_ecc) {
chip->ecc.calculate = s3c2410_nand_calculate_ecc;
chip->ecc.correct = s3c2410_nand_correct_data;
/* 此处,多数情况下,你所用的Nand Flash的控制器,都是支持硬件ECC的,所以,此处设置硬件ECC(HW_ECC) ,也是充分利用硬件的特性,而如果此处不用硬件去做的ECC的话,那么下面也会去设置成NAND_ECC_SOFT,系统会用默认的软件去做ECC校验,相比之下,比硬件ECC的效率就低很多,而你的nand flash的读写,也会相应地要慢不少*/
chip->ecc.mode = NAND_ECC_HW;
switch (info->cpu_type) {
case TYPE_S3C2410:
chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
chip->ecc.calculate = s3c2410_nand_calculate_ecc;
break;
。。。。。
}
} else {
chip->ecc.mode = NAND_ECC_SOFT;
}
if (set->ecc_layout != NULL)
chip->ecc.layout = set->ecc_layout;
if (set->disable_ecc)
chip->ecc.mode = NAND_ECC_NONE;
}
而我们要实现的底层函数,也就是上面蓝色标出来的一些函数而已:
(1)s3c2410_nand_write_buf 和 s3c2410_nand_read_buf:这是两个最基本的操作函数,其功能,就是往你的nand flash的控制器中的FIFO读写数据。一般情况下,是MTD上层的操作,比如要读取一页的数据,那么在发送完相关的读命令和等待时间之后,就会调用到你底层的read_buf,去nand Flash的FIFO中,一点点把我们要的数据,读取出来,放到我们制定的内存的缓存中去。写操作也是类似,将我们内存中的数据,写到Nand Flash的FIFO中去。具体的数据流向,参考上面的图4。
(2)s3c2410_nand_select_chip : 实现Nand Flash的片选。
(3)s3c2410_nand_hwcontrol:给底层发送命令或地址,或者设置具体操作的模式,都是通过此函数。
(4)s3c2410_nand_devready:Nand Flash的一些操作,比如读一页数据,写入(编程)一页数据,擦除一个块,都是需要一定时间的,在命发送完成后,就是硬件开始忙着工作的时候了,而硬件什么时候完成这些操作,什么时候不忙了,变就绪了,就是通过这个函数去检查状态的。一般具体实现都是去读硬件的一个状态寄存器,其中某一位是否是1,对应着是出于“就绪/不忙”还是“忙”的状态。这个寄存器,也就是我们前面分析时序图中的R/B#。
(5)s3c2410_nand_enable_hwecc: 在硬件支持的前提下,前面设置了硬件ECC的话,要实现这个函数,用于每次在读写操作前,通过设置对应的硬件寄存器的某些位,使得启用硬件ECC,这样在读写操作完成后,就可以去读取硬件校验产生出来的ECC数值了。
(6)s3c2410_nand_calculate_ecc:如果是上面提到的硬件ECC的话,就不用我们用软件去实现校验算法了,而是直接去读取硬件产生的ECC数值就可以了。
(7)s3c2410_nand_correct_data:当实际操作过程中,读取出来的数据所对应的硬件或软件计算出来的ECC,和从oob中读出来的ECC不一样的时候,就是说明数据有误了,就需要调用此函数去纠正错误。对于现在SLC常见的ECC算法来说,可以发现2位,纠正1位。如果错误大于1位,那么就无法纠正回来了。一般情况下,出错超过1位的,好像几率不大。至少我看到的不是很大。更复杂的情况和更加注重数据安全的情况下,一般是需要另外实现更高效和检错和纠错能力更强的ECC算法的。
当然,除了这些你必须实现的函数之外,在你更加熟悉整个框架之后,你可以根据你自己的nand flash的特点,去实现其他一些原先用系统默认但是效率不高的函数,而用自己的更高效率的函数替代他们,以提升你的nand flash的整体性能和效率。
② 嵌入式Linux 中,nand flash 和 nor flash ,那个用的多
Nand flash
NAND flash和NOR flash原理
一、存储数据的原理
两种闪存都是用三端器件作为存储单元,分别为源极、漏极和栅极,与场效应管的工作原理 相同,主要是利用电场的效应来控制源极与漏极之间的通断,栅极的 电流消耗极小,不同 的是场效应管为单栅极结构,而 FLASH 为双栅极结构,在栅极与硅衬底之间增加了一个浮 置栅极。[attach]158 [/attach]
浮置栅极是由氮化物夹在两层二氧化硅材料之间构成的,中间的氮化物就是可以存储电荷的 电荷势阱。上下两层氧化物的厚度大于 50 埃,以避免发生击穿。
二、浮栅的重放电
向数据单元内写入数据的过程就是向电荷势阱注入电荷的过程,写入数据有两种技术,热电 子注入(hot electron injection)和 F-N 隧道效应(Fowler Nordheim tunneling),前一种是通过源 极给浮栅充电,后一种是通过硅基层给浮栅充电。NOR 型 FLASH 通过热电子注入方式给浮 栅充电,而 NAND 则通过 F-N 隧道效应给浮栅充电。
在写入新数据之前,必须先将原来的数据擦除,这点跟硬盘不同,也就是将浮栅的电荷放掉, 两种 FLASH 都是通过 F-N 隧道效应放电。
三、0 和 1
这方面两种 FLASH 一样,向浮栅中注入电荷表示写入了'0',没有注入电荷表示'1',所以对 FLASH 清除数据是写 1 的,这与硬盘正好相反;
对于浮栅中有电荷的单元来说,由于浮栅的感应作用,在源极和漏极之间将形成带正电的空 间电荷区,这时无论控制极上有没有施加偏置电压,晶体管都将处于 导通状态。而对于浮 栅中没有电荷的晶体管来说只有当控制极上施加有适当的偏置电压,在硅基层上感应出电 荷,源极和漏极才能导通,也就是说在没有给控制极施 加偏置电压时,晶体管是截止的。 如果晶体管的源极接地而漏极接位线,在无偏置电压的情况下,检测晶体管的导通状态就可 以获得存储单元中的数据,如果位线上的电平为低,说明晶体管处于 导通状态,读取的数 据为 0,如果位线上为高电平,则说明晶体管处于截止状态,读取的数据为 1。由于控制栅 极在读取数据的过程中施加的电压较小或根本不施加 电压,不足以改变浮置栅极中原有的 电荷量,所以读取操作不会改变 FLASH 中原有的数据。
四、连接和编址方式
两种 FLASH 具有相同的存储单元,工作原理也一样,为了缩短存取时间并不是对每个单元 进行单独的存取操作,而是对一定数量的存取单元进行集体操作, NAND 型 FLASH 各存 储单元之间是串联的,而 NOR 型 FLASH 各单元之间是并联的;为了对全部的存储单元有 效管理,必须对存储单元进行统一编址。
NAND 的全部存储单元分为若干个块,每个块又分为若干个页,每个页是 512byte,就是 512 个 8 位数,就是说每个页有 512 条位线,每条位线下 有 8 个存储单元;那么每页存储的数 据正好跟硬盘的一个扇区存储的数据相同,这是设计时为了方便与磁盘进行数据交换而特意 安排的,那么块就类似硬盘的簇;容 量不同,块的数量不同,组成块的页的数量也不同。 在读取数据时,当字线和位线锁定某个晶体管时,该晶体管的控制极不加偏置电压,其它的 7 个都加上偏置电压 而导通,如果这个晶体管的浮栅中有电荷就会导通使位线为低电平, 读出的数就是 0,反之就是 1。
NOR 的每个存储单元以并联的方式连接到位线,方便对每一位进行随机存取;具有专用的 地址线,可以实现一次性的直接寻址;缩短了 FLASH 对处理器指令的执行时间。 五、性能
NAND flash和NOR flash的区别
一、NAND flash和NOR flash的性能比较
flash闪存是非易失存储器,可以对称为块的存储器单元块进行擦写和再编程。任何flash器件的写入操作只能在空或已擦除的单元内进行,所以大多数情况下,在进行写入操作之前必须先执行擦除。NAND器件执行擦除操作是十分简单的,而NOR则要求在进行擦除前先要将目标块内所有的位都写为0。由于擦除NOR器件时是以64~128KB的块进行的,执行一个写入/擦除操作的时间为5s,与此相反,擦除NAND器件是以8~32KB的块进行的,执行相同的操作最多只需要4ms。执行擦除时块尺寸的不同进一步拉大了NOR和NADN之间的性能差距,统计表明,对于给定的一套写入操作(尤其是更新小文件时),更多的擦除操作必须在基于NOR的单元中进行。这样,当选择存储解决方案时,设计师必须权衡以下的各项因素。
1、NOR的读速度比NAND稍快一些。
2、NAND的写入速度比NOR快很多。
3、NAND的4ms擦除速度远比NOR的5s快。
4、大多数写入操作需要先进行擦除操作。
5、NAND的擦除单元更小,相应的擦除电路更少。
二、NAND flash和NOR flash的接口差别
NOR flash带有SRAM接口,有足够的地址引脚来寻址,可以很容易地存取其内部的每一个字节。
NAND器件使用复杂的I/O口来串行地存取数据,各个产品或厂商的方法可能各不相同。8个引脚用来传送控制、地址和数据信息。NAND读和写操作采用512字节的块,这一点有点像硬盘管理此类操作,很自然地,基于NAND的存储器就可以取代硬盘或其他块设备。
三、NAND flash和NOR flash的容量和成本
NAND flash的单元尺寸几乎是NOR器件的一半,由于生产过程更为简单,NAND结构可以在给定的模具尺寸内提供更高的容量,也就相应地降低了价格。
NOR flash占据了容量为1~16MB闪存市场的大部分,而NAND flash只是用在8~128MB的产品当中,这也说明NOR主要应用在代码存储介质中,NAND适合于数据存储,NAND在CompactFlash、Secure Digital、PC Cards和MMC存储卡市场上所占份额最大。
四、NAND flash和NOR flash的可靠性和耐用性
采用flahs介质时一个需要重点考虑的问题是可靠性。对于需要扩展MTBF的系统来说,Flash是非常合适的存储方案。可以从寿命(耐用性)、位交换和坏块处理三个方面来比较NOR和NAND的可靠性。
五、NAND flash和NOR flash的寿命(耐用性)
在NAND闪存中每个块的最大擦写次数是一百万次,而NOR的擦写次数是十万次。NAND存储器除了具有10比1的块擦除周期优势,典型的NAND块尺寸要比NOR器件小8倍,每个NAND存储器块在给定的时间内的删除次数要少一些。
六、位交换
所有flash器件都受位交换现象的困扰。在某些情况下(很少见,NAND发生的次数要比NOR多),一个比特位会发生反转或被报告反转了。一位的变化可能不很明显,但是如果发生在一个关键文件上,这个小小的故障可能导致系统停机。如果只是报告有问题,多读几次就可能解决了。当然,如果这个位真的改变了,就必须采用错误探测/错误更正(EDC/ECC)算法。位反转的问题更多见于NAND闪存,NAND的供应商建议使用NAND闪存的时候,同时使用
七、EDC/ECC算法
这个问题对于用NAND存储多媒体信息时倒不是致命的。当然,如果用本地存储设备来存储操作系统、配置文件或其他敏感信息时,必须使用EDC/ECC系统以确保可靠性。
八、坏块处理
NAND器件中的坏块是随机分布的。以前也曾有过消除坏块的努力,但发现成品率太低,代价太高,根本不划算。
NAND器件需要对介质进行初始化扫描以发现坏块,并将坏块标记为不可用。在已制成的器件中,如果通过可靠的方法不能进行这项处理,将导致高故障率。
九、易于使用
可以非常直接地使用基于NOR的闪存,可以像其他存储器那样连接,并可以在上面直接运行代码。
由于需要I/O接口,NAND要复杂得多。各种NAND器件的存取方法因厂家而异。在使用NAND器件时,必须先写入驱动程序,才能继续执行其他操作。向NAND器件写入信息需要相当的技巧,因为设计师绝不能向坏块写入,这就意味着在NAND器件上自始至终都必须进行虚拟映射。
十、软件支持
当讨论软件支持的时候,应该区别基本的读/写/擦操作和高一级的用于磁盘仿真和闪存管理算法的软件,包括性能优化。
在NOR器件上运行代码不需要任何的软件支持,在NAND器件上进行同样操作时,通常需要驱动程序,也就是内存技术驱动程序(MTD),NAND和NOR器件在进行写入和擦除操作时都需要MTD。
使用NOR器件时所需要的MTD要相对少一些,许多厂商都提供用于NOR器件的更高级软件,这其中包括M-System的TrueFFS驱动,该驱动被Wind River System、Microsoft、QNX Software System、Symbian和Intel等厂商所采用。
驱动还用于对DiskOnChip产品进行仿真和NAND闪存的管理,包括纠错、坏块处理和损耗平衡。
③ 解释一下linux驱动程序结构框架及工作原理
一、Linux device driver 的概念
系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能:
1、对设备初始化和释放;
2、把数据从内核传送到硬件和从硬件读取数据;
3、读取应用程序传送给设备文件的数据和回送应用程序请求的数据;
4、检测和处理设备出现的错误。
在Linux操作系统下有三类主要的设备文件类型,一是字符设备,二是块设备,三是网络设备。字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待。
已经提到,用户进程是通过设备文件来与实际的硬件打交道。每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备?另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。设备文件的的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序。
最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。
二、实例剖析
我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理。把下面的C代码输入机器,你就会获得一个真正的设备驱动程序。
由于用户进程是通过设备文件同硬件打交道,对设备文件的操作方式不外乎就是一些系统调用,如 open,read,write,close…, 注意,不是fopen, fread,但是如何把系统调用和驱动程序关联起来呢?这需要了解一个非常关键的数据结构:
STruct file_operatiONs {
int (*seek) (struct inode * ,struct file *, off_t ,int);
int (*read) (struct inode * ,struct file *, char ,int);
int (*write) (struct inode * ,struct file *, off_t ,int);
int (*readdir) (struct inode * ,struct file *, struct dirent * ,int);
int (*select) (struct inode * ,struct file *, int ,select_table *);
int (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long);
int (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);
int (*open) (struct inode * ,struct file *);
int (*release) (struct inode * ,struct file *);
int (*fsync) (struct inode * ,struct file *);
int (*fasync) (struct inode * ,struct file *,int);
int (*check_media_change) (struct inode * ,struct file *);
int (*revalidate) (dev_t dev);
}
这个结构的每一个成员的名字都对应着一个系统调用。用户进程利用系统调用在对设备文件进行诸如read/write操作时,系统调用通过设备文件的主设备号找到相应的设备驱动程序,然后读取这个数据结构相应的函数指针,接着把控制权交给该函数。这是linux的设备驱动程序工作的基本原理。既然是这样,则编写设备驱动程序的主要工作就是编写子函数,并填充file_operations的各个域。
下面就开始写子程序。
#include <linux/types.h> 基本的类型定义
#include <linux/fs.h> 文件系统使用相关的头文件
#include <linux/mm.h>
#include <linux/errno.h>
#include <asm/segment.h>
unsigned int test_major = 0;
static int read_test(struct inode *inode,struct file *file,char *buf,int count)
{
int left; 用户空间和内核空间
if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )
return -EFAULT;
for(left = count ; left > 0 ; left--)
{
__put_user(1,buf,1);
buf++;
}
return count;
}
这个函数是为read调用准备的。当调用read时,read_test()被调用,它把用户的缓冲区全部写1。buf 是read调用的一个参数。它是用户进程空间的一个地址。但是在read_test被调用时,系统进入核心态。所以不能使用buf这个地址,必须用__put_user(),这是kernel提供的一个函数,用于向用户传送数据。另外还有很多类似功能的函数。请参考,在向用户空间拷贝数据之前,必须验证buf是否可用。这就用到函数verify_area。为了验证BUF是否可以用。
static int write_test(struct inode *inode,struct file *file,const char *buf,int count)
{
return count;
}
static int open_test(struct inode *inode,struct file *file )
{
MOD_INC_USE_COUNT; 模块计数加以,表示当前内核有个设备加载内核当中去
return 0;
}
static void release_test(struct inode *inode,struct file *file )
{
MOD_DEC_USE_COUNT;
}
这几个函数都是空操作。实际调用发生时什么也不做,他们仅仅为下面的结构提供函数指针。
struct file_operations test_fops = {?
read_test,
write_test,
open_test,
release_test,
};
设备驱动程序的主体可以说是写好了。现在要把驱动程序嵌入内核。驱动程序可以按照两种方式编译。一种是编译进kernel,另一种是编译成模块(moles),如果编译进内核的话,会增加内核的大小,还要改动内核的源文件,而且不能动态的卸载,不利于调试,所以推荐使用模块方式。
int init_mole(void)
{
int result;
result = register_chrdev(0, "test", &test_fops); 对设备操作的整个接口
if (result < 0) {
printk(KERN_INFO "test: can't get major number\n");
return result;
}
if (test_major == 0) test_major = result; /* dynamic */
return 0;
}
在用insmod命令将编译好的模块调入内存时,init_mole 函数被调用。在这里,init_mole只做了一件事,就是向系统的字符设备表登记了一个字符设备。register_chrdev需要三个参数,参数一是希望获得的设备号,如果是零的话,系统将选择一个没有被占用的设备号返回。参数二是设备文件名,参数三用来登记驱动程序实际执行操作的函数的指针。
如果登记成功,返回设备的主设备号,不成功,返回一个负值。
void cleanup_mole(void)
{
unregister_chrdev(test_major,"test");
}
在用rmmod卸载模块时,cleanup_mole函数被调用,它释放字符设备test在系统字符设备表中占有的表项。
一个极其简单的字符设备可以说写好了,文件名就叫test.c吧。
下面编译 :
$ gcc -O2 -DMODULE -D__KERNEL__ -c test.c –c表示输出制定名,自动生成.o文件
得到文件test.o就是一个设备驱动程序。
如果设备驱动程序有多个文件,把每个文件按上面的命令行编译,然后
ld ?-r ?file1.o ?file2.o ?-o ?molename。
驱动程序已经编译好了,现在把它安装到系统中去。
$ insmod ?–f ?test.o
如果安装成功,在/proc/devices文件中就可以看到设备test,并可以看到它的主设备号。要卸载的话,运行 :
$ rmmod test
下一步要创建设备文件。
mknod /dev/test c major minor
c 是指字符设备,major是主设备号,就是在/proc/devices里看到的。
用shell命令
$ cat /proc/devices
就可以获得主设备号,可以把上面的命令行加入你的shell script中去。
minor是从设备号,设置成0就可以了。
我们现在可以通过设备文件来访问我们的驱动程序。写一个小小的测试程序。
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
main()
{
int testdev;
int i;
char buf[10];
testdev = open("/dev/test",O_RDWR);
if ( testdev == -1 )
{
printf("Cann't open file \n");
exit(0);
}
read(testdev,buf,10);
for (i = 0; i < 10;i++)
printf("%d\n",buf[i]);
close(testdev);
}
编译运行,看看是不是打印出全1
以上只是一个简单的演示。真正实用的驱动程序要复杂的多,要处理如中断,DMA,I/O port等问题。这些才是真正的难点。上述给出了一个简单的字符设备驱动编写的框架和原理,更为复杂的编写需要去认真研究LINUX内核的运行机制和具体的设备运行的机制等等。希望大家好好掌握LINUX设备驱动程序编写的方法。
④ linux 内核支持 spi flash 和 nand flash同时使用吗
在<linux/spi/spi.h>头文件中包含有内核文档,做为主要的源码,你应该详读内核API文档的相关章节.本文只是概览,在了解细节前有个大致的图景是好的.
SPI请求会进入到I/O队列中.请求给定的SPI设备也是按照FIFO顺序进行的,通过完成机制异步通知.也同简单的同步措施:先写在读出来.
有俩类SPI驱动:
控制器驱动(Controller drivers)...集成在SOC中的控制器,经常扮演Master和Slave双角色.这类驱动直接接触到硬件层的寄存器甚至使用DMA.亦或者扮演bitbanger,仅需要GPIO脚;
协议驱动(Protocoldrivers)...在控制器和slave或者控制器和另外一条SPI链路上的Master传递消息.协议驱动是将控制器读到的数据,比如是一堆0,1代码,解析成有意义的协议数据;
对于协议驱动应该是我们要写的,spi在linux内核中有spi子系统分为spi核心层,就类似USBcore一样是主控制器部分,另一个就是spi设备层了.前者内核帮咱写好了,为了让你的spi设备能工作,就得借助spicontroller driver导出的一些设施来编写protocoldrivers了.
struct spi_device结构封装了俩类驱动间的master-side接口.
有一个最小化SPI编程接口的core,专注于使用板级初始化代码提供的设备表并借助于驱动模型来连接controller和protocol驱动.在sysfs文件系统中,SPI视图:
1 /sys/devices/.../CTLR ... physical node for a given SPI controller
2
3 /sys/devices/.../CTLR/spiB.C ... spi_device on bus "B",
4 chipselect C, accessed through CTLR.
5
6 /sys/bus/spi/devices/spiB.C ... symlink to that physical
7 .../CTLR/spiB.C device
8
9 /sys/devices/.../CTLR/spiB.C/modalias ... identifies the driver
10 that should be used with this device (for hotplug/coldplug)
11
12 /sys/bus/spi/drivers/D ... driver for one or more spi*.* devices
13
14 /sys/class/spi_master/spiB ... symlink (or actual device node) to
15 a logical node which could hold class related state for the
16 controller managing bus "B". All spiB.* devices share one
17 physical SPI bus segment, with SCLK, MOSI, and MISO.
需要注意的是控制器类状态的实际位置取决于您是否开启CONFIG_SYSFS_DEPRECATED标志.此时,唯一的特定类状态是总线编号("B" in "spiB"),所以/sys/class下的那些入口项是唯一的识别总线的标志.