导航:首页 > 编程系统 > linux线程做个定时器

linux线程做个定时器

发布时间:2023-11-20 23:02:08

❶ 在线程中怎么实现精确定时

问题一:定时器一般是以线程的方式运行的,如果能得到该线程的引用,就可以像查看Thread一样查看定时器的运行状态。
如果可以修改源代码最好给他提供一个方法返回线程引用
问题二:TimerTask实现了接口Runnable,如果是以newThread(TimerTask)。
start()方式启动就是做为一个单独的线程运行的,如果是timeTask.run()那就是方法调用,虽然占据一个线程,但这个线程就是主线程,并没有启动新的线程;
既然实现线程,自然可以通过Thread的isAlive方法获取其live状态;
一般情况下(不发生异常),定时器会一直运行,如果JVM停止,那么线程必然已经终止,如果JVM中只有这一个线程在运行,那么JVM不停,这个定时器就是一定在运行中,如果JVM中还有其他线程在运行,那么JVM不停,这个定时器有可能已经终止
PS:无论用不用线程池,线程启动方式只有两种(不包含mainThread):一种是继承Thread类,然后直接同构引用调用start方法,第二种就是继承Runnable接口,通过newThread(newMyRunnableClass())。
start()方式启动。
无论如何,都会有一个Thread类的引用
补充:
一个tomcat只启动一个进程,而JVM的垃圾处理器也只有一个,所以在一个工程里运行System.gc也会影响到其他工程。

❷ 怎样在linux下实现精确定时器

linux下使用select实现精确定时器
在编写程序时,我们经常回用到定时器。本文讲述如何使用select实现超级时钟。使用select函数,我们能实现微妙级别精度的定时器。同时,select函数也是我们在编写非阻塞程序时经常用到的一个函数。
首先看看select函数原型如下:
int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

参数说明:
slect的第一个参数nfds为fdset集合中最大描述符值加1,fdset是一个位数组,其大小限制为__FD_SETSIZE(1024),位数组的每一位代表其对应的描述符是否需要被检查。
select的第二三四个参数表示需要关注读、写、错误事件的文件描述符位数组,这些参数既是输入参数也是输出参数,可能会被内核修改用于标示哪些描述符上发生了关注的事件。所以每次调用select前都需重新初始化fdset。
timeout参数为超时时间,该结构会被内核修改,其值为超时剩余的时间。
利用select实现定时器,需要利用其timeout参数,注意到:
1)select函数使用了一个结构体timeval作为其参数。
2)select函数会更新timeval的值,timeval保持的值为剩余时间。
如果我们指定了参数timeval的值,而将其他参数都置为0或者NULL,那么在时间耗尽后,select函数便返回,基于这一点,我们可以利用select实现精确定时。
timeval的结构如下:
struct timeval{
long tv_sec;/*secons*
long tv_usec;/*microseconds*/
}

我们可以看出其精确到microseconds也即微妙。
一、秒级定时器

void seconds_sleep(unsigned seconds){
struct timeval tv;
tv.tv_sec=seconds;
tv.tv_usec=0;
int err;
do{
err=select(0,NULL,NULL,NULL,&tv);
}while(err<0 && errno==EINTR);
}

二、毫秒级别定时器

void milliseconds_sleep(unsigned long mSec){
struct timeval tv;
tv.tv_sec=mSec/1000;
tv.tv_usec=(mSec%1000)*1000;
int err;
do{
err=select(0,NULL,NULL,NULL,&tv);
}while(err<0 && errno==EINTR);
}

三、微妙级别定时器

void microseconds_sleep(unsigned long uSec){
struct timeval tv;
tv.tv_sec=uSec/1000000;
tv.tv_usec=uSec%1000000;
int err;
do{
err=select(0,NULL,NULL,NULL,&tv);
}while(err<0 && errno==EINTR);
}

现在我们来编写几行代码看看定时效果吧。

#include <stdio.h>
#include <sys/time.h>
#include <errno.h>
int main()
{
int i;
for(i=0;i<5;++i){
printf("%d\n",i);
//seconds_sleep(1);
//milliseconds_sleep(1500);
microseconds_sleep(1900000);
}
}

注:timeval结构体中虽然指定了一个微妙级别的分辨率,但内核支持的分别率往往没有这么高,很多unix内核将超时值向上舍入成10ms的倍数。此外,加上内核调度延时现象,即定时器时间到后,内核还需要花一定时间调度相应进程的运行。因此,定时器的精度,最终还是由内核支持的分别率决定。

❸ linux alarm 能在线程中用吗

不管是在进程还是线程,很多时候我们都会使用一些定时器之类的功能,这里就定时器在多线程的使用说一下。首先在linux编程中定时器函数有alarm()和setitimer(),alarm()可以提供一个基于秒的定时功能,而setitimer可以提供一个基于微妙的定时功能。

alarm()原型:
#include <unistd.h>
unsigned int alarm(unsigned int seconds);

这个函数在使用上很简单,第一次调用这个函数的时候是设置定时器的初值,下一次调用是重新设置这个值,并会返回上一次定时的剩余时间。

setitimer()原型:
#include <sys/time.h>
int setitimer(int which, const struct itimerval *value,struct itimerval *ovalue);

这个函数使用起来稍微有点说法,首先是第一个参数which的值,这个参数设置timer的计时策略,which有三种状态分别是:

ITIMER_REAL:使用系统时间来计数,时间为0时发出SIGALRM信号,这种定时能够得到一个精准的定时,当然这个定时是相对的,因为到了微秒级别我们的处理器本身就不够精确。

ITIMER_VIRTUAL:使用进程时间也就是进程分配到的时间片的时间来计数,时间为0是发出SIGVTALRM信号,这种定时显然不够准确,因为系统给进程分配时间片不由我们控制。

ITIMER_PROF:上面两种情况都能够触发

第二个参数参数value涉及到两个结构体:

struct itimerval {
struct timeval it_interval; /* next value */
struct timeval it_value; /* current value */
};

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */
};

在结构体itimerval中it_value是定时器当前的值,it_interval是当it_value的为0后重新填充的值。而timeval结构体中的两个变量就简单了一个是秒一个是微秒。

上面是这两个定时函数的说明,这个函数使用本不是很难,可以说是很简单,但是碰到具体的应用的时候可能就遇到问题了,在多进程编程中使用一般不会碰到什么问题,这里说的这些问题主要体现在多线程编程中。比如下面这个程序:

#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/time.h>

void sig_handler(int signo)
{
alarm(2);
printf("alarm signal\n");
}

void *pthread_func()
{
alarm(2);
while(1)
{
pause();
}
}

int main(int argc, char **argv)
{
pthread_t tid;
int retval;

signal(SIGALRM, sig_handler);

if((retval = pthread_create(&tid, NULL, pthread_func, NULL)) < 0)
{
perror("pthread_create");
exit(-1);
}

while(1)
{
printf("main thread\n");
sleep(10);
}
return 0;
}
这个程序的理想结果是:
main thread
alarm signal
alarm signal
alarm signal
alarm signal
alarm signal
main thread
可事实上并不是这样的,它的结果是:
main pthread
alarm signal
main pthread
alarm signal
main pthread

为什么会出现这种情况呢?是因为发送给工作线程的信号中断的主线程的sleep,并且这个中情况只影响主线程而不会影响到其他的工作线程。我们怎么才能解决这种问题呢,最简单的方法是修改这个程序,修改这个线程主线程使用alarm,工作线程使用sleep。这样就能够达到我们的要求,但是有时候有不能简单的这样操作。所以我们就需要进一步的修改我们的程序。在这里我第一个想到的是使用signal(SIGALRM, SIG_IGN),可是这个是设置整个进程对这个信号的响应方式,经过测试也确实不能完成我期望的功能,那么怎么办呢?有这样一个函数pthread_sigmask,线程中的信号屏蔽,函数的原型及相关函数为:

#include <signal.h>
int pthread_sigmask(int how, const sigset_t *restrict set, sigset_t *restrict oset);
函数中第一个参数how有三个值SIG_BLOCK、SIG_SETMASK和SIG_UNBLOCK这里我们是用第二个值SIG_SETMASK
int sigemptyset(sigset_t *set); /*清除信号集合set*/
int sigaddset(sigset_t *set, int signum); /*添加信号signum到信号集set中*/
然后我们改造我们的程序为:
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/time.h>

void sig_handler(int signo)
{
alarm(2);
printf("alarm signal\n");
}

void *pthread_func()
{
alarm(2);
while(1)
{
pause();
}
}

int main(int argc, char **argv)
{
pthread_t tid, tid_1;
int retval;

signal(SIGALRM, sig_handler);

if((retval = pthread_create(&tid, NULL, pthread_func, NULL)) < 0)
{
perror("pthread_create");
exit(-1);
}

sigset_t sigset;
sigemptyset(&sigset);
sigaddset(&sigset, SIGALRM);
pthread_sigmask(SIG_SETMASK,&sigset,NULL);

while(1)
{
printf("main pthread\n");
sleep(10);
}
return 0;
}

这个时候我们就能够看到我们想要的结果了。

这里再附一个setitimer的使用范例:

#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/time.h>

struct itimerval timerval;
void sig_handler(int signo)
{
printf("alarm signal\n");
}
void *pthread_func()
{

setitimer(ITIMER_REAL, &timerval, NULL);
while(1)
{
pause();
}
}

int main(int argc, char **argv)
{
pthread_t tid;
int retval;
timerval.it_interval.tv_sec = 2;
timerval.it_interval.tv_usec = 0;
timerval.it_value.tv_sec = 2;
timerval.it_value.tv_usec = 0;

signal(SIGALRM, sig_handler);

if((retval = pthread_create(&tid, NULL, pthread_func, NULL)) < 0)
{
perror("pthread_create");
exit(-1);
}

sigset_t sigset;
sigemptyset(&sigset);
sigaddset(&sigset, SIGALRM);
pthread_sigmask(SIG_SETMASK,&sigset,NULL);

while(1)
{
printf("main thread\n");
sleep(5);
}
return 0;
}

❹ linux下的几种时钟和定时器机制

1. RTC(Real Time Clock)

所有PC都有RTC. 它和CPU和其他芯片独立。它在电脑关机之后还可以正常运行。RTC可以在IRQ8上产生周期性中断. 频率在2Hz--8192HZ.

Linux只是把RTC用来获取时间和日期. 当然它允许进程通过对/dev/rtc设备来对它进行编程。Kernel通过0x70和0x71 I/O端口来访问RTC。

 

2. TSC(Time Stamp Counter)

80x86上的微处理器都有CLK输入针脚. 从奔腾系列开始. 微处理器支持一个计数器. 每当一个时钟信号来的时候. 计数器加1. 可以通过汇编指令rdtsc来得到计数器的值。通过calibrate_tsc可以获得CPU的频率. 它是通过计算大约5毫秒里tsc寄存器里面的增加值来确认的。或者可以通过cat /proc/cpuinfo来获取cpu频率。tsc可以提供比PIT更精确的时间度量。

 

3. PIT(Programmable internval timer)

除了RTC和TSC. IBM兼容机提供了PIT。PIT类似微波炉的闹钟机制. 当时间到的时候. 提供铃声. PIT不是产生铃声. 而是产生一种特殊中断. 叫定时器中断或者时钟中断。它用来告诉内核一个间隔过去了。这个时间间隔也叫做一个滴答数。可以通过编译内核是选择内核频率来确定。如内核频率设为1000HZ,则时间间隔或滴答为1/1000=1微秒。滴答月短. 定时精度更高. 但是用户模式的时间更短. 也就是说用户模式下程序执行会越慢。滴答的长度以纳秒形式存在tick_nsec变量里面。PIT通过8254的0x40--0x43端口来访问。它产生中断号为IRQ 0.

下面是关于pIT里面的一些宏定义:

HZ:每秒中断数。

CLOCK_TICK_RATE:值是1,193,182. 它是8254芯片内部振荡器频率。

LATCH:代表CLOCK_TICK_RATE和HZ的比率. 被用来编程PIT。

setup_pit_timer()如下:

spin_lock_irqsave(&i8253_lock, flags);

outb_p(0x34,0x43);

udelay(10);

outb_p(LATCH & 0xff, 0x40);

udelay(10);

outb (LATCH >> 8, 0x40);

spin_unlock_irqrestore(&i8253_lock, flags);

 

 

4. CPU Local Timer

最近的80x86架构的微处理器上的local apic提供了cpu local timer.他和pit区别在于它提供了one-shot和periodic中断。它可以使中断发送到特定cpu。one-shot中断常用在实时系统里面。

❺ 求linux毫秒级定时器的实现

1 nanosleep函数可以提供最高分辨率,一般是纳秒级
2 select、poll函数的定时是毫秒级,pselect是纳秒级
以上三个函数都可以实现你的要求

❻ 在linux环境中,如何实现多线程中使用多个定时器,POSIX定时器可以吗,如何用

个人解决了,以下是一个实现:
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <signal.h>
#include <string.h>
#include <pthread.h>
#include <time.h>

#if 1
pthread_attr_t attr;
timer_t hard_timer, software_timer;
struct sigevent hard_evp, software_evp;

static void watchdog_hard_timeout(union sigval v)
{
time_t t;
char p[32];
timer_t *q;
struct itimerspec ts;
int ret;

time(&t);
strftime(p, sizeof(p), "%T", localtime(&t));
printf("watchdog hard timeout!\n");
printf("%s thread %d, val = %u, signal captured.\n", p, (unsigned int)pthread_self(), v.sival_int);

q = (timer_t *)(v.sival_ptr);
printf("hard timer_t:%d add:%p, q:%p!\n", (int)hard_timer, &hard_timer, q);
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
ts.it_value.tv_sec = 6;
ts.it_value.tv_nsec = 0;

ret = timer_settime(*q, CLOCK_REALTIME, &ts, NULL);
if (ret != 0) {
printf("settime err(%d)!\n", ret);
}
}

static void watchdog_software_timeout(union sigval v)
{
time_t t;
char p[32];
timer_t *q;
struct itimerspec ts;
int ret;

time(&t);
strftime(p, sizeof(p), "%T", localtime(&t));
printf("watchdog software timeout!\n");
printf("%s thread %d, val = %u, signal captured.\n", p, (unsigned int)pthread_self(), v.sival_int);

q = (timer_t *)(v.sival_ptr);
printf("hard timer_t:%d add:%p, q:%p!\n", (int)hard_timer, &hard_timer, q);
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
ts.it_value.tv_sec = 10;
ts.it_value.tv_nsec = 0;

ret = timer_settime(*q, CLOCK_REALTIME, &ts, NULL);
if (ret != 0) {
printf("settime err(%d)!\n", ret);
}
}

static void dcmi_sol_pthread_attr_destroy(pthread_attr_t *attr)
{
pthread_attr_destroy(attr);
}

static int dcmi_sol_pthread_attr_init(pthread_attr_t *attr)
{
int ret;

if ((ret = pthread_attr_init(attr) != 0)) {
goto err;
}
if ((ret = pthread_attr_setdetachstate(attr, PTHREAD_CREATE_DETACHED)) != 0) {
dcmi_sol_pthread_attr_destroy(attr);
goto err;
}
/* 设置线程的栈大小,失败则用系统默认值 */
pthread_attr_setstacksize(attr, 128 * 1024);

return 0;
err:
printf("set ptread attr failed(ret:%d)!\n", ret);
return -1;
}

int main(void)
{
struct itimerspec ts;
int ret;

ret = dcmi_sol_pthread_attr_init(&attr);
if (ret != 0) {
printf("init pthread attributes fail(%d)!\n", ret);
exit(-1);
}

memset(&hard_evp, 0, sizeof(struct sigevent));
hard_evp.sigev_value.sival_ptr = &hard_timer;
hard_evp.sigev_notify = SIGEV_THREAD;
hard_evp.sigev_notify_function = watchdog_hard_timeout;
hard_evp.sigev_notify_attributes = NULL;//&attr;

memset(&software_evp, 0, sizeof(struct sigevent));
software_evp.sigev_value.sival_ptr = &software_timer;
software_evp.sigev_notify = SIGEV_THREAD;
software_evp.sigev_notify_function = watchdog_software_timeout;
software_evp.sigev_notify_attributes = NULL;//&attr;

ret = timer_create(CLOCK_REALTIME, &hard_evp, &hard_timer);
if(ret != 0) {
perror("hard timer_create fail!");
exit(-1);
}
ret = timer_create(CLOCK_REALTIME, &software_evp, &software_timer);
if (ret != 0) {
timer_delete(hard_timer);
perror("software timer_create fail!");
exit(-1);
}

ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
ts.it_value.tv_sec = 6;
ts.it_value.tv_nsec = 0;

ret = timer_settime(hard_timer, CLOCK_REALTIME, &ts, NULL);
if(ret != 0) {
perror("hard timer_settime fail!");
timer_delete(hard_timer);
timer_delete(software_timer);
exit(-1);
}

ts.it_value.tv_sec = 10;
ret = timer_settime(software_timer, CLOCK_REALTIME, &ts, NULL);
if(ret != 0) {
perror("hard timer_settime fail!");
timer_delete(hard_timer);
timer_delete(software_timer);
exit(-1);
}

while(1) {
printf("main ready sleep!\n");
sleep(15);
printf("main sleep finish!\n");
}

return 0;
}
#endif

阅读全文

与linux线程做个定时器相关的资料

热点内容
javafrom提交地址参数 浏览:721
git发布版本 浏览:728
vc修改文件名 浏览:149
linux65从域 浏览:321
用什么东西压缩文件 浏览:406
怎么删除ipad隐藏的APP 浏览:981
编程如何占用大量内存 浏览:116
多个excel表格文件如何组合 浏览:918
ubuntu内核升级命令 浏览:679
pgp文件夹 浏览:894
一键还原的文件是什么格式 浏览:581
女汉子微信名霸气十足 浏览:65
win10手机蓝屏修复 浏览:419
windows2008激活工具 浏览:259
g71的编程应注意什么 浏览:572
文件路径不符合是什么意思 浏览:543
qq如何换绑微信绑定 浏览:67
文件包下载的安装包在哪里 浏览:811
90版本升级不送 浏览:186
工具箱英文 浏览:382

友情链接