导航:首页 > 编程系统 > linux线程异常捕捉

linux线程异常捕捉

发布时间:2023-09-03 03:52:41

『壹』 linux中我想用jstack捕获java线程,捕获10次,每隔5秒捕获一次并把捕获的生成文件,然后生成压缩包文件

sh脚本,加上定时任务

『贰』 linux多线程服务器发送结构体给客户端异常

请说明不正常的具体现象是什么?数据发送接收后你有没有用printf之类把值打印对比一下?

大部分SOCKET程序和进程线程共享并发互斥都没有什么具体关系,TCP缓冲粘包倒是有可能,如果真是这样的话,你可以尝试改为UDP检测一下,如果UDP完全正确,而TCP出现你说的情况,那么就是缓冲粘包了;或把发送接收都设置为定长包,也可以验证是不是粘包的问题。

P.S. 少用TCP,多用UDP,UDP不粘包。看到QQ了吗?为什么QQ传文件网上效率最高最快?用的是UDP,TCP下载数据的方法就是垃圾!

『叁』 Linux 多线程编程(二)2019-08-10

三种专门用于线程同步的机制:POSIX信号量,互斥量和条件变量.

在Linux上信号量API有两组,一组是System V IPC信号量,即PV操作,另外就是POSIX信号量,POSIX信号量的名字都是以sem_开头.

phshared参数指定信号量的类型,若其值为0,就表示这个信号量是当前进程的局部信号量,否则该信号量可以在多个进程之间共享.value值指定信号量的初始值,一般与下面的sem_wait函数相对应.

其中比较重要的函数sem_wait函数会以原子操作的方式将信号量的值减一,如果信号量的值为零,则sem_wait将会阻塞,信号量的值可以在sem_init函数中的value初始化;sem_trywait函数是sem_wait的非阻塞版本;sem_post函数将以原子的操作对信号量加一,当信号量的值大于0时,其他正在调用sem_wait等待信号量的线程将被唤醒.
这些函数成功时返回0,失败则返回-1并设置errno.

生产者消费者模型:
生产者对应一个信号量:sem_t procer;
消费者对应一个信号量:sem_t customer;
sem_init(&procer,2)----生产者拥有资源,可以工作;
sem_init(&customer,0)----消费者没有资源,阻塞;

在访问公共资源前对互斥量设置(加锁),确保同一时间只有一个线程访问数据,在访问完成后再释放(解锁)互斥量.
互斥锁的运行方式:串行访问共享资源;
信号量的运行方式:并行访问共享资源;
互斥量用pthread_mutex_t数据类型表示,在使用互斥量之前,必须使用pthread_mutex_init函数对它进行初始化,注意,使用完毕后需调用pthread_mutex_destroy.

pthread_mutex_init用于初始化互斥锁,mutexattr用于指定互斥锁的属性,若为NULL,则表示默认属性。除了用这个函数初始化互斥所外,还可以用如下方式初始化:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER。
pthread_mutex_destroy用于销毁互斥锁,以释放占用的内核资源,销毁一个已经加锁的互斥锁将导致不可预期的后果。

pthread_mutex_lock以原子操作给一个互斥锁加锁。如果目标互斥锁已经被加锁,则pthread_mutex_lock则被阻塞,直到该互斥锁占有者把它给解锁.
pthread_mutex_trylock和pthread_mutex_lock类似,不过它始终立即返回,而不论被操作的互斥锁是否加锁,是pthread_mutex_lock的非阻塞版本.当目标互斥锁未被加锁时,pthread_mutex_trylock进行加锁操作;否则将返回EBUSY错误码。注意:这里讨论的pthread_mutex_lock和pthread_mutex_trylock是针对普通锁而言的,对于其他类型的锁,这两个加锁函数会有不同的行为.
pthread_mutex_unlock以原子操作方式给一个互斥锁进行解锁操作。如果此时有其他线程正在等待这个互斥锁,则这些线程中的一个将获得它.


三个打印机轮流打印:

输出结果:

如果说互斥锁是用于同步线程对共享数据的访问的话,那么条件变量就是用于在线程之间同步共享数据的值.条件变量提供了一种线程之间通信的机制:当某个共享数据达到某个值时,唤醒等待这个共享数据的线程.
条件变量会在条件不满足的情况下阻塞线程.且条件变量和互斥量一起使用,允许线程以无竞争的方式等待特定的条件发生.

其中pthread_cond_broadcast函数以广播的形式唤醒所有等待目标条件变量的线程,pthread_cond_signal函数用于唤醒一个等待目标条件变量线程.但有时候我们可能需要唤醒一个固定的线程,可以通过间接的方法实现:定义一个能够唯一标识目标线程的全局变量,在唤醒等待条件变量的线程前先设置该变量为目标线程,然后采用广播的方式唤醒所有等待的线程,这些线程被唤醒之后都检查该变量以判断是否是自己.

采用条件变量+互斥锁实现生产者消费者模型:

运行结果:

阻塞队列+生产者消费者

运行结果:

『肆』 Linux下多线程程序崩溃时怎么提取出所有线程的函数调用栈

gcc编译时加-g参数,然后用gdb去跑,挂掉的时候使用bt命令就可以看到某一线程的调用栈了,你可版以使用thread命令去切换线程权,就可以看到不同线程的调用栈了,具体去网络一下gdb的用法就行了。
另:
还可以把堆栈错误给mp core,如果你觉得有必要的话。

『伍』 Linux下能捕获c++空指针异常吗

#include <exception>
#include <iostream>
using namespace std;

/**********************************
//project -> Properties -> C/C++ -> Code Generation --> Enable C++ Exceptions
//选择 Yes with SEH Exceptions (/EHa) 这样的话C++的try catch 也可以捕获到空指针,内存越界,0除异常
//默认是选择Yes (/EHsc)
**********************************/

void TestIntType()
{
try
{
throw 1;
}
catch(...)
{
cout<< "在 try block 中, 准备抛出一个异常." << endl;
}
}

void TestDoubleType()
{
try
{
throw 0.5;
}
catch(...)
{
cout<< "在 try block 中, 准备抛出一个异常." << endl;
}
}

void TestEmptyPointType()
{
try
{
int* p = NULL;
*p = 3;
}
catch(...)
{
cout<< "非法地址操作异常" << endl;
}
}

void TestDivZeroType()
{
try
{
int b = 0;
int a = 3/b;
}
catch(...)
{
cout<< "0除异常" << endl;
}
}

void TestMemoryOutType()
{
int * a = new int[4];
try
{
for (int i = 0; i<245; i++)
{
a++;
}
*a = 3;
}
catch(...)
{
cout<< "内存越界异常" << endl;
}
}

int main(int argc, char* argv[])
{
TestEmptyPointType();
//TestDivZeroType();
TestMemoryOutType();
return 1;
}

『陆』 有人能教下我有关linux里面线程的知识吗

.线程的基本介绍
(1)线程的概述
线程与进程类似,也允许应用程序并发执行多个任务的一种机制。一个进程可以包含多个线程,同一程序中的所有线程共享同一份全局内存区域,线程之间没有真正意义的等级之分。同一个进程中的线程可以并发执行,如果处理器是多核的话线程也可以并行执行,如果一个线程因为等待I/O操作而阻塞,那么其他线程依然可以继续运行
(2)线程优于进程的方面

argv,environ

主线程栈
线程3的栈
线程2的栈
线程1的栈
共享函数库共享的内存

未初始化的数据段
初始化数据段
文本
.进程间的信息难以共享。由于除去只读代码段外,父子进程并未共享内存,因此必须采用一些进程间通讯,在进程之间交换信息
.调用fork()来创建进程代价相对较高
线程很好的解决了上述俩个问题
.线程之间能够方便,快速的共享信息,只需将数据复制到共享(全局或堆)变量中即可
.创建线程比创建线程通常要快10甚至更多,线程创建之所以快,是因为fork创建进程时所需复制多个属性,而在线程中,这些属性是共享的。
(3)创建线程
启动程序时,产生的进程只有单条线程,我们称之为主线程
#include<pthread.h>
int pthread_create(pthread_t *thread,const pthread_attr_t *attr,void*(*start)(void *),void *arg);12

新线程通过调用带有arg的函数开始执行,调用pthread_create()的线程会继续执行该调用之后的语句。
(4)终止线程
可以以如下方式终止线程的运行
.线程调用pthread_exit()
.线程start函数执行return语句并返回指定值
.调用pthread_cancel()取消线程
.任意线程调用了exit(),或者主线程执行了return语句,都会导致进程中的所有线程立即终止
pthread_exit()函数可以终止线程,且其返回值可由另一线程通过调用pthread_join()获得
#include<pthread.h>void pthread_exit(void *retval);12

调用pthread_exit()相当于在线程的start函数中执行return,不同之处在于,pthread_exit()可以在任何地方调用,参数retval指定了线程的返回值
(5)获取线程ID
#include<pthread.h>pthread_t pthread_self(void);12

线程ID在应用程序中主要有如下用途
.不同的pthreads函数利用线程ID来标识要操作目标线程。
.在具体的应用程序中,以特定线程的线程ID作为动态数据结构的标签,这颇有用处,既可用来识别某个数据结构的创建者或属主线程,又可确定随后对该数据结构执行操作的具体线程
函数pthread_equal()可检查俩个线程的ID是否相同
#include<pthread.h>int pthread_equal(pthread_t t1,pthread_t t2);//如果相同返回非0值,否则返回0123

(6)连接已终止的线程
函数pthread_join()等待由thread表识的线程终止
#include<pthread.h>int pthread_join(pthread_t thread,void **retval);//返回0调用成功,否则失败123

如果pthread_join()传入一个之前已然连接过的线程ID,将会导致无法预知的行为,当相同线程ID在参与一次连接后恰好为另一新建线程所重用,再度连接的可能就是这个新线程
若线程未分离,则就应该使用pthread_join()来连接线程,否则会产生僵尸线程
pthrea_join()函数的要点
.线程之间的关系是对等的,所以任意线程都可以调用pthread_join()来连接其他线程
.pthread_join()无法针对任意线程,只能连接单个线程
(6)线程的分离
默认情况下线程都是可连接的,但有时候,我们并不关心线程退出的状态,我们可以调用pthread_detach()并向thread参数传入指定线程的的标识符,将该线程标记为处于分离状态
#include<pthread.h>int pthread_detach(pthread_t thread);//返回0成功,否则失败123

一旦线程处于分离状态,就不能在使用pthread_join()来获取其状态,也无法使其重返可连接状态
(7)在应用程序中如何来选择进程还是线程
.线程之间共享数据很简单,进程间的数据共享需要更多的投入
.创建线程要比创建进程块很多
.多线程编程时,需要确保调用线程安全的函数
.某个线程中的bug可能会危害进程中所有线程
.每个线程都在征用宿主进程中有限的虚拟地址空间
.在多线程应用中,需要小心使用信号
.除了数据,线程还可以共享文件描述符,信号处置,当前工作目录,以及用户ID和组ID
线程的同步
(1)保护共享变量访问:互斥量
线程的主要优势在于能够通过全局变量来共享信息,不过这种共享是有代价的。必须确保多个线程修改同一变量时,不会有其他线程也正在修改此变量,为避免线程更新时共享变量时所出现的问题,必须使用互斥量来确保同时仅有一个线程可以访问某项共享资源
(2)静态分配的互斥锁
互斥锁既可以像静态变量那样分配,也可以在运行时动态分配,互斥量属于pthread_mutex_t类型的变量,在使用之前必须对其初始化。对于静态分配的互斥量而言,可如下例所示,将PTHREAD_MUTEX_INITIALIZER赋给互斥量
pthread_mutex_t = PTHREAD_MUTEX_INITIALIZER;1

1.加锁和解锁互斥量
初始化之后,互斥量处于未锁定状态。函数pthread_mutex_lock()可以锁定某一互斥量
而函数pthread_mutex_unlock()则可以将一个互斥量解锁
#include<pthread.h>int pthread_mutex_lock(pthread_mutex_t *mutex);int pthread_mutex_unlock(pthread_mutex_t *mutex);//返回0成功,其他失败1234

要锁定互斥量,在调用pthread_mutex_lock()时需要指定互斥量,如果互斥量当前处于未锁定状态,则该调用将会立即返回,如果该互斥量已被其他线程锁定,那么该调用将会阻塞,直至互斥量被解锁
函数pthread_mutex_unlock()将解锁之前已遭调用线程锁定的互斥量
2.互斥量的性能
通常情况下,线程会花费更多的时间去做其他工作,对互斥量的加锁解锁相对要少的多,因此使用互斥量对大部分程序来说性能并无显著的影响
3.互斥量的死锁
当一个线程需要同时访问多个共享资源时,没个资源由不同的互斥索管理。当超过一个线程加锁同一组互斥量时,就有可能发生死锁。如下图所示
线程A
1.pthread_mutex_lock(mutex1);
2.pthread_mutex_lock(mutex2);
线程2
1.pthread_mutex_lock(mutex2);
2.pthread_mutex_lock(mutex1);
每个线程都成功的锁住一个互斥量,接着试图对以为另一线程锁定的互斥量加锁,就会一直等下去
要避免此类死锁问题,最简单的就是定义互斥量的层级关系

阅读全文

与linux线程异常捕捉相关的资料

热点内容
linux设置字符编码 浏览:15
帝王世纪升级哪个兵种 浏览:409
c编程开发软件是什么 浏览:334
二的大写怎么写app 浏览:612
乐视数据删除了怎么找回来 浏览:651
ug编程初始化怎么办 浏览:295
nginxajax配置文件 浏览:467
小程序获取二进制图片 浏览:206
为什么有的数控车编程有百分号 浏览:425
m文件有什么用 浏览:359
宜昌做投标文件多少钱 浏览:166
uc浏览器小说下载那个文件夹 浏览:908
qq和手机 浏览:238
ps备份文件教程 浏览:306
数据库原理嵌套查询 浏览:679
为什么文件只解压了一部分 浏览:728
c语言课程教学视频java源码下载 浏览:444
老毛桃2014u盘启动盘制作教程 浏览:53
盗取qq密码视频教程 浏览:948
win10有几个g 浏览:890

友情链接