导航:首页 > 编程系统 > linux内核空间堆栈

linux内核空间堆栈

发布时间:2023-05-18 11:10:50

linux为什么需要内核栈,系统调用时直接使用用户栈不行吗

内核栈和用户栈区别:
intel的cpu分为四个运行级别ring0~ring3
内核创建进程,创建进程的同时创建进程控制块,创建进程自己的堆栈
一个进程有两个堆栈,用户栈和系统栈
用户堆栈的空间指向用户地址空间,内核堆栈的空间指向内核地址空间。
有个CPU堆栈指针寄存器,进程运行的状态有用户态和内核态,当进程运行在用户态时。CPU堆栈指针寄存器指向的是用户堆栈地址,使用的是用户堆栈;当进程运行在内核态时,CPU堆栈指针寄存器指向的是内核堆栈地址,使用的是内核堆栈。
堆栈切换
当系统因为系统调用(软中断)或硬件中断,CPU切换到特权工作模式,进程陷入内核态,进程使用的栈也要从用户栈转向系统栈。
从用户态到内核态要两步骤,首先是将用户堆栈地址保存到内核堆栈中,然后将CPU堆栈指针寄存器指向内核堆栈。
当由内核态转向用户态,步骤首先是将内核堆栈中得用户堆栈地址恢复到CPU堆栈指针寄存器中。
内核栈和用户栈区别
1.
栈是系统运行在内核态的时候使用的栈,用户栈是系统运行在用户态时候使用的栈。
当进程由于中断进入内核态时,系统会把一些用户态的数据信息保存到内核栈中,当返回到用户态时,取出内核栈中得信息恢复出来,返回到程序原来执行的地方。
用户栈就是进程在用户空间时创建的栈,比如一般的函数调用,将会用到用户栈。
2.
内核栈是属于操作系统空间的一块固定区域,可以用于保存中断现场、保存操作系统子程序间相互调用的参数、返回值等。
用户栈是属于用户进程空间的一块区域,用户保存用户进程子程序间的相互调用的参数、返回值等。
3.
每个Windows 都有4g的进程空间,系统栈使用进程空间的地段部分,用户栈是高端部分如果用户要直接访问系统栈部分,需要有特殊的方式。
为何要设置两个不同的栈?
共享原因:
内核的代码和数据是为所有的进程共享的,如果不为每一个进程设置对应的内核栈,那么就不能实现不同的进程执行不同的代码。
安全原因:
如果只有一个栈,那么用户就可以修改栈内容来突破内核安全保护。

Ⅱ Linux内核——用户堆栈和内核堆栈

每个进程都有用户堆栈和内核堆栈两个堆栈。进程在用户态时使用用户堆栈,陷入到内核态时便使用内核堆栈。

Ⅲ linux 线程间共享内核栈吗

首先,我们知道所有线程共享主线程的虚拟地址空间(current->mm指向同一个地址),且都有自己的用户态堆栈(共享父进程的地址空间,再在里面分配自己的独立栈,默认2M)。这是毫无疑问的,但还有一点我没搞明白,内核栈是共享还是独立的?猜测:独立的。理由:要不然内核栈对应的thread_info中的tast_struct没有办法与每个线程对应起来,因为现在已经有多个task_struct了,但保存内核栈的thread_info(其实是thread_union联合体)中只能保存一个task_struct。所以理论上分析,虽然可以共享地址空间,但每个线程还是需要一个单独的内核栈的。看代码:分析创建线程最终肯定会走到内核函数do_fork()中来的,所以从此函数看起。do_fork()->_process()->p_task_struct()fork.c中p_task_struct()的实现:static struct task_struct *p_task_struct(struct task_struct *orig){struct task_struct *tsk;struct thread_info *ti;unsigned long *stackend;int node = tsk_fork_get_node(orig);int err;tsk = alloc_task_struct_node(node);if (!tsk)return NULL;ti = alloc_thread_info_node(tsk, node);/*就是这里,果然分配内核栈了*/if (!ti)goto free_tsk;err = arch_p_task_struct(tsk, orig);/*这里分配task_struct结构*/if (err)goto free_ti;tsk->stack = ti; ...}

Ⅳ linux 设置堆栈大小 为无限制

在来/etc/profile 的最后面添加ulimit -s unlimited 保存源,source /etc/profile使修改文件生效

linux查看修改线程默认栈空间大小 :ulimit -s
1、通过命令 ulimit -s 查看linux的默认栈空间大小,默认情况下 为10240 即10M
2、通过命令 ulimit -s 设置大小值 临时改变栈空间大小:ulimit -s 102400, 即修改为100M
3、可以在/etc/rc.local 内 加入 ulimit -s 102400 则可以开机就设置栈空间大小
4、在/etc/security/limits.conf 中也可以改变栈空间大小:
#<domain> <type> <item> <value>
* soft stack 102400
重新登录,执行ulimit -s 即可看到改为102400 即100M

Ⅳ 怎么解决 LINUX 堆栈溢出内存的问题

【缓冲区溢出的处理】
你屋子里的门和窗户越少,入侵者进入的方式就越少……
由于缓冲区溢出是一个编程问题,所以只能通过修复被破坏的程序的代码而解决问题。如果你没有源代码,从上面“堆栈溢出攻击”的原理可以看出,要防止此类攻击,我们可以:
① 开放程序时仔细检查溢出情况,不允许数据溢出缓冲区。由于编程和编程语言的原因,这非常困难,而且不适合大量已经在使用的程序;
② 使用检查堆栈溢出的编译器或者在程序中加入某些记号,以便程序运行时确认禁止黑客有意造成的溢出。问题是无法针对已有程序,对新程序来讲,需要修改编译器;
③ 经常检查你的操作系统和应用程序提供商的站点,一旦发现他们提供的补丁程序,就马上下载并且应用在系统上,这是最好的方法。但是系统管理员总要比攻击者慢 一步,如果这个有问题的软件是可选的,甚至是临时的,把它从你的系统中删除。举另外一个例 子,你屋子里的门和窗户越少,入侵者进入的方式就越少。
----------------------------------------------------------------------------------------------------------------------------------------
char buf[3];
memset(buf,0x55,10);
这个程序就存在溢出

对数据块的访问超出该数据块的地址范围
===================================================================================
【一个检测工具
Valgrind 是一款 Linux下(支持 x86、x86_64和ppc32)程序的内存调试工具,它可以对编译后的二进制程序进行内存使用监测(C语言中的 malloc 和 free,以及 C++ 中的 new 和 delete),找出内存泄漏问题。

Valgrind 中包含的 Memcheck 工具可以检查以下的程序错误:

使用未初始化的内存 (Use of uninitialised memory)
使用已经释放了的内存 (Reading/writing memory after it has been free’d)
使用超过 malloc 分配的内存空间(Reading/writing off the end of malloc’d blocks)
对堆栈的非法访问(Reading/writing inappropriate areas on the stack)
申请的空间是否有释放(Memory leaks – where pointers to malloc’d blocks are lost forever)
malloc/free/new/delete 申请和释放内存的匹配(Mismatched use of malloc/new/new [] vs free/delete/delete [])
src 和 dst 的重叠(Overlapping src and dst pointers in memcpy() and related functions)
重复 free

① 编译安装 Valgrind:
# wget http://valgrind.org/downloads/valgrind-3.4.1.tar.bz2
# tar xvf valgrind-3.4.1.tar.bz2
# cd valgrind-3.4.1/
# ./configure
…………
Primary build target: X86_LINUX
Secondary build target:
Default supp files: exp-ptrcheck.supp xfree-3.supp xfree-4.supp glibc-2.X-drd.supp glibc-2.34567-NPTL-helgrind.supp glibc-2.5.supp
# make
# make install
# whereis valgrind
valgrind:
/usr/bin/valgrind
/usr/lib/valgrind
/usr/local/bin/valgrind
/usr/local/lib/valgrind
/usr/include/valgrind
/usr/share/man/man1/valgrind.1.gz
运行程序
使用示例:对“ls”程序进程检查,返回结果中的“definitely lost: 0 bytes in 0 blocks.”表示没有内存泄漏。
# /usr/local/bin/valgrind --tool=memcheck --leak-check=full ls /
==29801== Memcheck, a memory error detector.
==29801== Copyright (C) 2002-2008, and GNU GPL'd, by Julian Seward et al.
==29801== Using LibVEX rev 1884, a library for dynamic binary translation.
==29801== Copyright (C) 2004-2008, and GNU GPL'd, by OpenWorks LLP.
==29801== Using valgrind-3.4.1, a dynamic binary instrumentation framework.
==29801== Copyright (C) 2000-2008, and GNU GPL'd, by Julian Seward et al.
==29801== For more details, rerun with: -v
==29801==
bin etc lost+found mnt proc selinux sys usr
boot home media net root smokeping tftpboot var
dev lib misc opt sbin srv tmp
==29801==
==29801== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 21 from 1)
==29801== malloc/free: in use at exit: 14,744 bytes in 32 blocks.
==29801== malloc/free: 162 allocs, 130 frees, 33,758 bytes allocated.
==29801== For counts of detected errors, rerun with: -v
==29801== searching for pointers to 32 not-freed blocks.
==29801== checked 139,012 bytes.
==29801==
==29801== LEAK SUMMARY:
==29801== definitely lost: 0 bytes in 0 blocks.
==29801== possibly lost: 0 bytes in 0 blocks.
==29801== still reachable: 14,744 bytes in 32 blocks.
==29801== suppressed: 0 bytes in 0 blocks.
==29801== Reachable blocks (those to which a pointer was found) are not shown.
==29801== To see them, rerun with: --leak-check=full --show-reachable=yes
----------------------------------------------------------------------------------------------------------------------------------------
# /usr/local/bin/valgrind --tool=memcheck --leak-check=full ps /
==29898== Memcheck, a memory error detector.
==29898== Copyright (C) 2002-2008, and GNU GPL'd, by Julian Seward et al.
==29898== Using LibVEX rev 1884, a library for dynamic binary translation.
==29898== Copyright (C) 2004-2008, and GNU GPL'd, by OpenWorks LLP.
==29898== Using valgrind-3.4.1, a dynamic binary instrumentation framework.
==29898== Copyright (C) 2000-2008, and GNU GPL'd, by Julian Seward et al.
==29898== For more details, rerun with: -v
==29898==
ERROR: Garbage option.
********* simple selection ********* ********* selection by list *********
-A all processes -C by command name
-N negate selection -G by real group ID (supports names)
-a all w/ tty except session leaders -U by real user ID (supports names)
-d all except session leaders -g by session OR by effective group name
-e all processes -p by process ID
T all processes on this terminal -s processes in the sessions given
a all w/ tty, including other users -t by tty
g OBSOLETE -- DO NOT USE -u by effective user ID (supports names)
r only running processes U processes for specified users
x processes w/o controlling ttys t by tty
*********** output format ********** *********** long options ***********
-o,o user-defined -f full --Group --User --pid --cols --ppid
-j,j job control s signal --group --user --sid --rows --info
-O,O preloaded -o v virtual memory --cumulative --format --deselect
-l,l long u user-oriented --sort --tty --forest --version
-F extra full X registers --heading --no-heading --context
********* misc options *********
-V,V show version L list format codes f ASCII art forest
-m,m,-L,-T,H threads S children in sum -y change -l format
-M,Z security data c true command name -c scheling class
-w,w wide output n numeric WCHAN,UID -H process hierarchy
==29898==
==29898== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 14 from 1)
==29898== malloc/free: in use at exit: 16 bytes in 2 blocks.
==29898== malloc/free: 20 allocs, 18 frees, 2,344 bytes allocated.
==29898== For counts of detected errors, rerun with: -v
==29898== searching for pointers to 2 not-freed blocks.
==29898== checked 263,972 bytes.
==29898==
==29898== 8 bytes in 1 blocks are definitely lost in loss record 2 of 2
==29898== at 0x4005A88: malloc (vg_replace_malloc.c:207)
==29898== by 0xBFF6DF: strp (in /lib/libc-2.5.so)
==29898== by 0x804A464: (within /bin/ps)
==29898== by 0x804A802: (within /bin/ps)
==29898== by 0x804964D: (within /bin/ps)
==29898== by 0xBA5E8B: (below main) (in /lib/libc-2.5.so)
==29898==
==29898== LEAK SUMMARY:
==29898== definitely lost: 8 bytes in 1 blocks.
==29898== possibly lost: 0 bytes in 0 blocks.
==29898== still reachable: 8 bytes in 1 blocks.
==29898== suppressed: 0 bytes in 0 blocks.
==29898== Reachable blocks (those to which a pointer was found) are not shown.
==29898== To see them, rerun with: --leak-check=full --show-reachable=yes

Ⅵ linux系统最大堆栈内存

linux系统最大堆栈消搜内存是-Xmx512m。根据查找相关公开资料显敏简示,linux系统堆栈大小拿拿历的配置启动参数,初始堆大小-Xms32m最大堆大小-Xmx512m。

Ⅶ linux内核中内核局部变量过大不会导致栈溢出吗

不会首先全局变量是不占堆栈空间的
全局全量编译的时侯是放在.data段的
只有没有static修饰的局部变量在程序运行的时侯临时分配在栈上,new,或malloc等定义的变量分配在堆上
如果想让栈溢出也很容易,栈也有其极限的,只要定义一个无限递归函数,让它没完没了的递归就行了,一会就崩了。
建议学一下编译原理

Ⅷ 求教关于linux的堆栈设置

在/etc/profile 的最后面添加ulimit -s unlimited 保存,source /etc/profile使修改文件生效

linux查看修改线程默认栈空间大小 :ulimit -s
1、通过命令 ulimit -s 查看linux的默认栈空间大小,默认情况下 为10240 即10M
2、通过命令 ulimit -s 设置大小值 临时改变栈空间大小:ulimit -s 102400, 即修改为100M
3、可以在/etc/rc.local 内 加入 ulimit -s 102400 则可以开机就设置栈空间大小
4、在/etc/security/limits.conf 中也可以改变栈空间大小:
#<domain> <type> <item> <value>
* soft stack 102400
重新登录,执行ulimit -s 即可看到改为102400 即100M

Ⅸ Linux内核中用户空间栈和内核栈的区别

您好,很高兴为您解答。

1.进程的堆栈

内核在创建进程的时候,在创建task_struct的同事,会为进程创建相应的堆栈。每个进程会有两个栈,一个用户栈,存在于用户空间,一个内核栈,存在于内核空间。当进程在用户空间运行时,cpu堆栈指针寄存器里面的内容是用户堆栈地址,使用用户栈;当进程在内核空间时,cpu堆栈指针寄存器里面的内容是内核栈空间地址,使用内核栈。

2.进程用户栈和内核栈的切换

当进程因为中断或者系统调用而陷入内核态之行时,进程所使用的堆栈也要从用户栈转到内核栈。

进程陷入内核态后,先把用户态堆栈的地址保存在内核栈之中,然后设置堆栈指针寄存器的内容为内核栈的地址,这样就完成了用户栈向内核栈的转换;当进程从内核态恢复到用户态之行时,在内核态之行的最后将保存在内核栈里面的用户栈的地址恢复到堆栈指针寄存器即可。这样就实现了内核栈和用户栈的互转。

那么,我们知道从内核转到用户态时用户栈的地址是在陷入内核的时候保存在内核栈里面的,但是在陷入内核的时候,我们是如何知道内核栈的地址的呢?

关键在进程从用户态转到内核态的时候,进程的内核栈总是空的。这是因为,当进程在用户态运行时,使用的是用户栈,当进程陷入到内核态时,内核栈保存进程在内核态运行的相关信心,但是一旦进程返回到用户态后,内核栈中保存的信息无效,会全部恢复,因此每次进程从用户态陷入内核的时候得到的内核栈都是空的。所以在进程陷入内核的时候,直接把内核栈的栈顶地址给堆栈指针寄存器就可以了。

3.内核栈的实现

内核栈在kernel-2.4和kernel-2.6里面的实现方式是不一样的。

在kernel-2.4内核里面,内核栈的实现是:

Uniontask_union{
Structtask_structtask;
Unsignedlongstack[INIT_STACK_SIZE/sizeof(long)];
};

其中,INIT_STACK_SIZE的大小只能是8K。

内核为每个进程分配task_struct结构体的时候,实际上分配两个连续的物理页面,底部用作task_struct结构体,结构上面的用作堆栈。使用current()宏能够访问当前正在运行的进程描述符。

注意:这个时候task_struct结构是在内核栈里面的,内核栈的实际能用大小大概有7K。

内核栈在kernel-2.6里面的实现是(kernel-2.6.32):

Unionthread_union{
Structthread_infothread_info;
Unsignedlongstack[THREAD_SIZE/sizeof(long)];
};

其中THREAD_SIZE的大小可以是4K,也可以是8K,thread_info占52bytes。

当内核栈为8K时,Thread_info在这块内存的起始地址,内核栈从堆栈末端向下增长。所以此时,kernel-2.6中的current宏是需要更改的。要通过thread_info结构体中的task_struct域来获得于thread_info相关联的task。更详细的参考相应的current宏的实现。

structthread_info{
structtask_struct*task;
structexec_domain*exec_domain;
__u32flags;
__u32status;
__u32cpu;
…..
};

注意:此时的task_struct结构体已经不在内核栈空间里面了。


如若满意,请点击右侧【采纳答案】,如若还有问题,请点击【追问】

希望我的回答对您有所帮助,望采纳!

~ O(∩_∩)O~

Ⅹ Linux系统调用详解(如何从用户空间进入内核

其实进程在内核态和用户态各有一个堆栈。运行在用户空间时进程使用的是用户空间中的堆栈,而运行在内核空间时,进程使用的是内核空间中的堆栈。所以说,Linux 中每个进程有两个栈,分别用于用户态和内核态。我其实也不是很理解,如果你想更理解的话可以看下这篇文章,上面讲的很详细网页链接希望对你有帮助啊

阅读全文

与linux内核空间堆栈相关的资料

热点内容
安卓nba2k18 浏览:776
文件夹密码怎么修改密码 浏览:271
苹果数据中心用什么服务器 浏览:769
省内圆通快递寄文件夹需要多少钱 浏览:740
iphone程序加密 浏览:884
win10文件夹调整文件行高 浏览:681
创意手绘教程 浏览:754
微信删除帐号信息 浏览:596
mysql操作类文件 浏览:649
绕过xp密码 浏览:158
大众速腾专用app有哪些 浏览:455
arpa首先将计算机网络划分为 浏览:617
苹果系统开机音乐 浏览:875
windows8显示隐藏文件 浏览:603
ipad2可以升级到92吗 浏览:857
如何打开ps保存的文件 浏览:744
幼儿编程教育有哪些 浏览:453
汽车发外地用什么app 浏览:810
网络如何赞美女人漂亮 浏览:143
如何把桌面文件放到excel里面 浏览:363

友情链接