导航:首页 > 编程系统 > linux绑定cpu命令

linux绑定cpu命令

发布时间:2023-05-17 06:57:11

linux查看中断绑定在哪个cpu

cpuset 允许把所有进程echo到一个cpuset目录中,与指定的回cpu绑定。答 The following script which is a starting point for investigating willmove all the processes to a specific cpuset with one cpu. if [ ! -d /sys/fs/cgroup ]; then echo...

② linux核隔离绑定区别

Linux核隔离和绑定都桐碧是Linux内核对进程和CPU资源的管局银举理机制,但是它们的概念和作用有所不同。

1. 核隔离(CPU isolation):核隔离是指将CPU核心绑定到一个或多个特定进程上,从而实现不同进程之间的CPU资源隔离,避免不同进程之间的CPU竞争,并提高CPU利用率。这种方法需要使用cpuset控制工具进行设置,用于分配CPU资源给指定的进程组。

2. 绑定(CPU affinity):绑定是指将一个或多个特定的CPU核心分配给某个进程或线程,使其只能在该CPU核心上运行,其他CPU核心不参与该进程或线程的调度。通过绑定CPU核心可以避免缓存变冷、页表失效等问题,提高CPU缓存命中率和应用程序性能。这种方法需要使用taskset命令来实现。

总之,在不同的应用场景搏厅下,可根据需求选择不同的CPU资源管理机制,以便更好地管理和利用CPU资源。

③ linux下把进程/线程绑定到特定cpu核上运行

你那个是系统下把CPU的核说钉在五河以下是比较好的,因为吧和内心压力非常大,发热量非常大。

④ 如何监控linux 服务器 cpu命令

cat /proc/cpuinfo中的信息
processor 逻辑处理器的id。
physical id 物理封装的处理器的id。
core id 每个核心的id。
cpu cores 位于相同物理封装的处理器中的内核数量。
siblings 位于相同物理封装的处理器中的逻辑处理器的数量。

1 查看物理CPU的个数
#cat /proc/cpuinfo |grep "physical id"|sort |uniq|wc –l
2、 查看逻辑CPU的个数
#cat /proc/cpuinfo |grep "processor"|wc –l
3、 查看CPU是几核
#cat /proc/cpuinfo |grep "cores"|uniq
4、 查看CPU的主频
#cat /proc/cpuinfo |grep MHz|uniq
5、 # uname -a
6、 Linux euis1 2.6.9-55.ELsmp #1 SMP Fri Apr 20 17:03:35 EDT 2007 i686 i686 i386 GNU/Linux
(查看当前操作系统内核信息)
7、 # cat /etc/issue | grep Linux
8、 Red Hat Enterprise Linux AS release 4 (Nahant Update 5(查看当前操作系统发行版信息)
9、 # cat /proc/cpuinfo | grep name | cut -f2 -d: | uniq -c
8 Intel(R) Xeon(R) CPU E5410 @ 2.33GHz
(看到有8个逻辑CPU, 也知道了CPU型号)
9 # cat /proc/cpuinfo | grep physical | uniq -c
4 physical id : 0
4 physical id : 1
(说明实际上是两颗4核的CPU)

10、# getconf LONG_BIT
32
(说明当前CPU运行在32bit模式下, 但不代表CPU不支持64bit)

11、# cat /proc/cpuinfo | grep flags | grep ' lm ' | wc –l
8(结果大于0, 说明支持64bit计算. lm指long mode, 支持lm则是64bit)

12、如何获得CPU的详细信息:
linux命令:cat /proc/cpuinfo
13、用命令判断几个物理CPU,几个核等:
逻辑CPU个数:
# cat /proc/cpuinfo | grep "processor" | wc -l
物理CPU个数:
# cat /proc/cpuinfo | grep "physical id" | sort | uniq | wc -l
14、每个物理CPU中Core的个数:
# cat /proc/cpuinfo | grep "cpu cores" | wc -l
15、是否为超线程?如果有两个逻辑CPU具有相同的”core id”,那么超线程是打开的。每个物理CPU中逻辑CPU(可能是core, threads或both)的个数:
# cat /proc/cpuinfo | grep "siblings"

1.查看CPU信息命令
cat /proc/cpuinfo
2.查看内存信息命令
cat /proc/meminfo
3.查看硬盘信息命令
fdisk -l

查看CPU信息(型号)
# cat /proc/cpuinfo | grep name | cut -f2 -d: | uniq -c
8 Intel(R) Xeon(R) CPU E5410 @ 2.33GHz
(看到有8个逻辑CPU, 也知道了CPU型号)

# cat /proc/cpuinfo | grep physical | uniq -c
4 physical id : 0
4 physical id : 1
(说明实际上是两颗4核的CPU)
PS:Jay added on 10th, May, 2011
# 其实是可能有超线程HT技术,不一定是有4核,也可能是2核4线程;当时还理解不清楚

# getconf LONG_BIT
32
(说明当前CPU运行在32bit模式下, 但不代表CPU不支持64bit)

#

⑤ Linux里面ps -eo comm,pcpu命令作用是什么

# ps -ef 显示所有进程
# ps -eo comm,pcpu 显圆败示所有命令占用的cpu的大小
e显示所有进程,o指定命令的名字
# ps -eo comm,pmem 显示所有命令占用的mem的大小
ps工具标识进程的橘蚂颤5种状态码:
D 不可中断 uninterruptible sleep (usually IO)
R 运行 runnable (on run queue)
S 中断 sleeping
T 停止 traced or stopped
Z 僵死 a defunct (”zombie”物乎) process

⑥ linux cpu隔离和qemu中cpu绑定试验

查看当前qemu进程(pid:1406)的cpu(psr)使用情况:

$ps -o pid,command,psr -q 1406

proc文件系统中cpu允许调度信息

$cat /proc/1406/status    

Cpus_allowed: 8

Cpus_allowed_list:      3

绑定至某个cpu:

$taskset -cp 2 1406

cpu隔岁培离(独占)试验:

在linux启动时加isocpu即可:

kernel ....  root=...  isolcpu=2,3

启动时,默认进程乎渣唯就不会调度到2,3号cpu上

再加上前梁隐面的taskset,就可以控制某些cpu个某些进程独占

⑦ linux下怎么解除中断和cpu绑定

在多 CPU 的环境中,还有一个中断平衡的问题,比如,网卡中断会教给哪个 CPU 处理,这个内参数控制哪些容 CPU 可以绑定 IRQ 中断。其中的 {number} 是对应设备的中断编号,可以用下面的命令找出: cat /proc/interrupt 比如,一般 eth0 的 IRQ

⑧ linux中查看虚拟内存和cpu占用率的命令是什么

top,free,cat/proc/meminfo,cat/proc/cpuinfo。

[root@centerlisdbproc]#dmidecode|grep-A16"MemoryDevice"|more[objectObject]。

查看内存使用情况:cat/proc/meminfo,查看CPU使用情况:cat /proc/cpuinfo。

在系统维护的过程中,随时可能有需要查看 CPU 使用率,并根据相应信息分析系统状况的需要。在 CentOS 中,可以通过 top 命令来查看 CPU 使用状况。

运行 top 命令后,CPU 使用状态会以全屏的方式显示,并且会处在对话的模式 -- 用基于 top 的命令,可以控制显示方式等等。退出 top 的命令为 q (在 top 运行中敲 q 键一次)。

top命令是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器。

可以直接使用top命令后,查看%MEM的内容。可以选择按进程查看或者按用户查看,如想查看oracle用户的进程内存使用情况的话可以使用如下的命令:$ top -u oracle。

(8)linux绑定cpu命令扩展阅读:

一、查看内存占用:

1、free

# free -m。

以MB为单位显示内存使用情况。

# free -h。

以GB为单位显示内存使用情况。

# free -t。

以总和的形式查询内存的使用信息。

# free -s 5。

周期性的查询内存使用信息。

每5秒执行一次命令。

二、查看CPU使用情况:

1、top。

top后键入P看一下谁占用最大。

# top -d 5。

周期性的查询CPU使用信息。

每5秒刷新一次。

2、ps auxw(查看本机的进程所占cpu和mem的百分比情况)。

使用"ps auxw" 可以查看到本机的进程所占cpu和mem的百分比情况。

# ps auxw | head -1

%CPU 进程的cpu占用率。

%MEM 进程的内存占用率。

3、查看本机所有进程的CPU占比之和。

# cat cpu_per.sh

三、查看cpu信息(信息记录在/proc/cpuinfo中)

# 总核数 = 物理CPU个数 X 每颗物理CPU的核数。

# 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数。



⑨ 将进程绑定到指定的CPU上

背景:为什么要进程绑定到指定的CPU上?

1) 减少CPU切换开销

CPU固定绑定到主机的指定CPU上,在整个运行期间,不会发生CPU浮动, 减少CPU切换开销 ,提高虚拟机的计算性能。

2) 提供CPU cache的命中率

在多核运行的机器上,每个CPU自身会有缓存,缓存着进程使用的信息,而进程可能会被OS调度到其他CPU上,如此, CPU cache命中率 就低了,当绑定CPU后,程序就会一直在指定的cpu跑,不会由操作系统调度到其他CPU上,性能有一定的提高。

taskset:设置或颂肆检索进程的CPU相关性

1) 如果没有taskset命令, 安装 包含taskset命令的util-linux工具集:yum install util-linux

2) 查看进程的CPU亲和力 ,-p选项是一个十六进制数,-cp选项是一个cpu列表,表示相应的cpu核。3的二进制形式是0011,相应的第0位和第1位都是1,表示14795进程只能运行在cpu的第0个核和第1个核。

$ taskset -p 14795

pid 14795's current affinity mask: 3

$ taskset -cp 14795

pid 14795's current affinity list: 0,1

3) 绑定CPU : taskset -cp <CPU IDs>  <Process ID>

$ taskset -cp  0  14795

pid 14795's current affinity list: 0,1

pid 14795's new affinity list: 0

OpenStack K版本引入了许多CPU高级特性功能,不仅支持自定义CPU拓扑功能,支持设置虚拟机CPU的socket、core、threads等,还支持CPU pinning功能,即CPU核绑定,甚至能够配置虚拟机独占物理CPU,虚拟机的vCPU能够固定绑定到物理宿主机的指定pCPU上,在整个运行期间,不会发生CPU浮动,减少CPU切换开销,提高虚拟机的计算性能。

$ lscpu

Architecture:          x86_64

CPU op-mode(s):        32-bit, 64-bit

Byte Order:            Little Endian

CPU(s):                40

On-line CPU(s) list:  0-39

Thread(s) per core:    2

Core(s) per socket:    10

Socket(s):            2

NUMA node(s):          2

Vendor ID:            GenuineIntel

CPU family:            6

Model:                63

Model name:            Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz

Stepping:              2

CPU MHz:              1201.480

BogoMIPS:              4603.87

Virtualization:        VT-x

L1d cache:            32K

L1i cache:         则掘   32K

L2 cache:              256K

L3 cache:              25600K

NUMA node0 CPU(s):    0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38

NUMA node1 CPU(s):    1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39

以上可知,该宿主机有两个CPU(socket),每个CPU 10核(core),每个核可以开启两个 超线程(thread) ,即有40个逻辑CPU。宿主机CPU包孙樱核含两个NUMA node,其中node0包括0,2,4,...,38,node1包括1,3,5,...,39。

步骤1) 创建支持绑核的主机集合

不是所有的计算节点都支持CPU绑核特性,可以通过主机集合(host aggregate)把支持绑核CPU的主机放到一个集合中。

步骤2)  创建支持绑核的flavor

目前Nova并不支持启动时直接指定主机集合的metadata(hint只支持指定server group),需要通过flavor的扩展属性和主机集合的metadata匹配,将不匹配的主机滤掉,部署到匹配的主机上。flavor支持配置虚拟机的CPU拓扑、QoS、CPU pinning策略、NUMA拓扑以及PCI passthrough等扩展属性。

步骤3) 通过步骤2) 的Flavor创建虚拟机,创建完成到虚机所在物理机上查看虚机绑核情况:

查询方法1) virsh mpxml 虚机id

<vcpu placement='static'>8</vcpu>

<cputune>

<vcpupin vcpu='0' cpuset='25'/>

<vcpupin vcpu='1' cpuset='5'/>

<vcpupin vcpu='2' cpuset='8'/>

<vcpupin vcpu='3' cpuset='28'/>

<vcpupin vcpu='4' cpuset='9'/>

<vcpupin vcpu='5' cpuset='29'/>

<vcpupin vcpu='6' cpuset='24'/>

<vcpupin vcpu='7' cpuset='4'/>

<emulatorpin cpuset='4-5,8-9,24-25,28-29'/>

</cputune>

查询方法2) 在虚拟机所运行的物理宿主机上执行virsh list找到相应虚机的实例id,然后virsh vcpupin 实例id可以查到该虚拟机所占用的CPU具体核数。

# virsh vcpupin vm46  绑核的虚机

VCPU: CPU Affinity

----------------------------------

  0: 25

  1: 5

  2: 8

  3: 28

  4: 9

  5: 29

  6: 24

  7: 4

# virsh vcpupin vm6 未绑核的虚机

VCPU: CPU Affinity

----------------------------------

  0: 0-39 

  1: 0-39

  2: 0-39 

  3: 0-39

  4: 0-39 

  5: 0-39

  6: 0-39 

  7: 0-39

virsh vcpupin 子命令是KVM自带的指令工具,它可以把vm实例的每个vcpu与宿主机的cpu对应绑定,这种绑定方式粒度更小。

# virsh vcpupin vm4 查看绑定情况

VCPU: CPU Affinity

----------------------------------

  0: 0-23     

  1: 0-23

#默认2个vcpu没有进行绑定,可以在0-23号cpu上切换

# virsh vcpuinfo vm4 查看CPU使用时长

VCPU:          0

CPU:            10  #运行在10号cpu上

State:          running

CPU time:      14.2s

CPU Affinity:  yyyyyyyyyyyyyyyyyyyyyyyy

VCPU:          1

CPU:            8      #运行在8号cpu上

State:          running

CPU time:      6.8s

CPU Affinity:  yyyyyyyyyyyyyyyyyyyyyyyy

# virsh vcpupin vm4 0 3 绑定虚机的第1个CPU到宿主机的第4号cpu上

# virsh vcpupin vm4 1 5 绑定虚机的第2个CPU到宿主机的第6号cpu上

# virsh vcpuinfo vm4

VCPU:          0

CPU:            3

State:          running

CPU time:      14.5s

CPU Affinity:  ---y--------------------

VCPU:          1

CPU:            5

State:          running

CPU time:      7.3s

CPU Affinity:  -----y------------------

# virsh vcpupin vm4

VCPU: CPU Affinity

----------------------------------

  0: 3

  1: 5

三种方法的相同点:都能实现绑核效果

优劣势对比:openstack支持虚机重生虚拟迁移到其他物理主机上,第1种方法在这些操作后绑核还是有效的,但2和3就不会绑核的。此外,第1种方法是自动的,2和3是手动的,可以作为临时补救方法。

在虚拟机上执行高密度计算,测试的Python脚本如下:

# test_compute.py

k = 0

for i in xrange(1, 100000):

    for j in xrange(1, 100000):

        k = k + i * j

使用shell脚本同时跑50个进程,保证CPU满载运行:

for i in `seq 1 50`; do

    python test_compute.py &

done

使用sar命令查看宿主机CPU使用情况:

sar -P ALL 1 100

结果如下:

Linux 3.10.0-229.20.1.el7.x86_64 (8409a4dcbe1d11af)    05/10/2018      _x86_64_        (40 CPU)

10:20:14 PM    CPU    %user    %nice  %system  %iowait    %steal    %idle

10:20:15 PM    all    20.48      0.00      0.15      0.03      0.00    79.34

10:20:15 PM      0      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      1      0.99      0.00      0.00      0.00      0.00    99.01

10:20:15 PM      2      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      3      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      4    100.00      0.00      0.00      0.00      0.00      0.00

10:20:15 PM      5    100.00      0.00      0.00      0.00      0.00      0.00

10:20:15 PM      6      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      7      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      8    100.00      0.00      0.00      0.00      0.00      0.00

10:20:15 PM      9    100.00      0.00      0.00      0.00      0.00      0.00

10:20:15 PM      10      1.01      0.00      0.00      0.00      0.00    98.99

10:20:15 PM      11      1.00      0.00      0.00      0.00      0.00    99.00

10:20:15 PM      12      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      13      0.00      0.00      0.99      0.00      0.00    99.01

10:20:15 PM      14      0.99      0.00      0.99      0.00      0.00    98.02

10:20:15 PM      15      1.00      0.00      0.00      0.00      0.00    99.00

10:20:15 PM      16      0.99      0.00      0.99      0.00      0.00    98.02

10:20:15 PM      17      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      18      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      19      3.96      0.00      0.99      0.00      0.00    95.05

10:20:15 PM      20      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      21      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      22      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      23      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      24    100.00      0.00      0.00      0.00      0.00      0.00

10:20:15 PM      25    100.00      0.00      0.00      0.00      0.00      0.00

10:20:15 PM      26      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      27      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      28    100.00      0.00      0.00      0.00      0.00      0.00

10:20:15 PM      29    100.00      0.00      0.00      0.00      0.00      0.00

10:20:15 PM      30      2.00      0.00      0.00      0.00      0.00    98.00

10:20:15 PM      31      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      32      2.97      0.00      0.99      0.00      0.00    96.04

10:20:15 PM      33      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      34      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      35      1.00      0.00      0.00      0.00      0.00    99.00

10:20:15 PM      36      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      37      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      38      0.00      0.00      0.00      0.00      0.00    100.00

10:20:15 PM      39      0.00      0.00      0.00      0.00      0.00    100.00

从CPU使用情况看宿主机的pCPU 4-5,8-9,24-25,28-29使用率100%,并且整个过程中没有浮动,符合我们的预期结果,说明CPU核绑定成功。

⑩ Linux 如何绑定指定线程在某个固定CPU上

大概的介绍一下Linux 的指定CPU运行,包括进程和线程。linux下的命令是可以查看当前的cpu的运行状态,按1可以查看系统有多少个CPU,以及每个CPU的运行状态。
可是如何查看线程的CPU呢?top
-Hp pid,pid就是你当前程序的进程号,如果是多线程的话,是可以查看进程内所有线程的CPU和内存使用情况。

pstree可以查看主次线程,同样的pstree -p pid。可以查看进程的线程情况。

taskset这个其实才是重点,可以查看以及设置当前进程或线程运行的CPU(设置亲和力)。

taskset -pc pid,查看当前进程的cpu,当然有的时候不只是一个,taskset -pc cpu_num pid ,cpu_num就是设置的cpu。

这样的话基本的命令和操作其实大家都知道了,接下来就是在代码中完成这些操作,并通过命令去验证代码的成功率。

进程制定CPU运行:

[cpp] view plain
#include<stdlib.h>
#include<stdio.h>
#include<sys/types.h>
#include<sys/sysinfo.h>
#include<unistd.h>
#define __USE_GNU
#include<sched.h>
#include<ctype.h>
#include<string.h>

int main(int argc, char* argv[])
{
//sysconf获取有几个CPU
int num = sysconf(_SC_NPROCESSORS_CONF);
int created_thread = 0;
int myid;
int i;
int j = 0;

//原理其实很简单,就是通过cpu_set_t进行位与操作
cpu_set_t mask;
cpu_set_t get;

if (argc != 2)
{
printf("usage : ./cpu num\n");
exit(1);
}

myid = atoi(argv[1]);

printf("system has %i processor(s). \n", num);

//先进行清空,然后设置掩码
CPU_ZERO(&mask);
CPU_SET(myid, &mask);

//设置进程的亲和力
if (sched_setaffinity(0, sizeof(mask), &mask) == -1)
{
printf("warning: could not set CPU affinity, continuing...\n");
}
while (1)
{

CPU_ZERO(&get);
//获取当前进程的亲和力
if (sched_getaffinity(0, sizeof(get), &get) == -1)
{
printf("warning: cound not get cpu affinity, continuing...\n");
}
for (i = 0; i < num; i++)
{
if (CPU_ISSET(i, &get))
{
printf("this process %d is running processor : %d\n",getpid(), i);
}
}
}
return 0;
}

进程设置CPU运行,其实只能是单线程。多线程设定CPU如下:

[cpp] view plain
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>
#include <sched.h>

void *myfun(void *arg)
{
cpu_set_t mask;
cpu_set_t get;
char buf[256];
int i;
int j;
//同样的先去获取CPU的个数
int num = sysconf(_SC_NPROCESSORS_CONF);
printf("system has %d processor(s)\n", num);

for (i = 0; i < num; i++) {
CPU_ZERO(&mask);
CPU_SET(i, &mask);
//这个其实和设置进程的亲和力基本是一样的
if (pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask) < 0) {
fprintf(stderr, "set thread affinity failed\n");
}
CPU_ZERO(&get);
if (pthread_getaffinity_np(pthread_self(), sizeof(get), &get) < 0) {
fprintf(stderr, "get thread affinity failed\n");
}
for (j = 0; j < num; j++)
{
if (CPU_ISSET(j, &get))
{
printf("thread %d is running in processor %d\n", (int)pthread_self(), j);
}
}
j = 0;
while (j++ < 100000000) {
memset(buf, 0, sizeof(buf));
}
}
pthread_exit(NULL);
}

int main(int argc, char *argv[])
{
pthread_t tid;
if (pthread_create(&tid, NULL, (void *)myfun, NULL) != 0)
{
fprintf(stderr, "thread create failed\n");
return -1;
}
pthread_join(tid, NULL);
return 0;
}

阅读全文

与linux绑定cpu命令相关的资料

热点内容
怎么让苹果手机下载其他APP 浏览:471
多个cs文件编译成一个dll 浏览:606
sql管理工具70 浏览:130
js里面的图片对齐 浏览:965
三星2016视频文件夹 浏览:317
旧手机创新手机数据怎么传 浏览:954
怎么删除领克app里的记录 浏览:254
捷波朗弦月3最新版本 浏览:123
win10保存不了文件 浏览:735
jsonobject解析list 浏览:558
网站未知回应怎么回事 浏览:103
refdoc数据库 浏览:602
传奇世界文件在哪里下载 浏览:306
国际象棋编程哪个好 浏览:255
一加5截屏在哪个文件夹 浏览:764
发送失败错误代码10009 浏览:508
word转换位图 浏览:237
百度文件包含违规内容提取不了 浏览:317
大名网站推广多少钱 浏览:791
喜欢网络词都有什么 浏览:811

友情链接