1. linux c内存溢出的core mp bug怎么跟
浅析Linux下core文件
当我们的程序崩溃时,内核有可能把该程序当前内存映射到core文件里,方便程序员找到程序出现问题的地方。最常出 现的,几乎所有C程序员都出现过的错误就是“段错误”了。也是最难查出问题原因的一个错误。下面我们就针对“段错误”来分析core文件的产生、以及我们 如何利用core文件找到出现崩溃的地方。
何谓core文件
当一个程序崩溃时,在进程当前工作目录的core文件中复制了该进程的存储图像。core文件仅仅是一个内存映象(同时加上调试信息),主要是用来调试的。
当程序接收到以下UNIX信号会产生core文件:
名字
说明
ANSI C POSIX.1
SVR4 4.3+BSD
缺省动作
SIGABRT
异常终止(abort)
. .
. .
终止w/core
SIGBUS
硬件故障
.
. .
终止w/core
SIGEMT
硬件故障
. .
终止w/core
SIGFPE
算术异常
. .
. .
终止w/core
SIGILL
非法硬件指令
. .
. .
终止w/core
SIGIOT
硬件故障
. .
终止w/core
SIGQUIT
终端退出符
.
. .
终止w/core
SIGSEGV
无效存储访问
. .
. .
终止w/core
SIGSYS
无效系统调用
. .
终止w/core
SIGTRAP
硬件故障
. .
终止w/core
SIGXCPU
超过CPU限制(setrlimit)
. .
终止w/core
SIGXFSZ
超过文件长度限制(setrlimit)
. .
终止w/core
在系统默认动作列,“终止w/core”表示在进程当前工作目录的core文件中复制了该进程的存储图像(该文件名为core,由此可以看出这种功能很久之前就是UNIX功能的一部分)。大多数UNIX调试程序都使用core文件以检查进程在终止时的状态。
core文件的产生不是POSIX.1所属部分,而是很多UNIX版本的实现特征。UNIX第6版没有检查条件 (a)和(b),并且其源代码中包含如下说明:“如果你正在找寻保护信号,那么当设置-用户-ID命令执行时,将可能产生大量的这种信号”。4.3 + BSD产生名为core.prog的文件,其中prog是被执行的程序名的前1 6个字符。它对core文件给予了某种标识,所以是一种改进特征。
表中“硬件故障”对应于实现定义的硬件故障。这些名字中有很多取自UNIX早先在DP-11上的实现。请查看你所使用的系统的手册,以确切地确定这些信号对应于哪些错误类型。
下面比较详细地说明这些信号。
• SIGABRT 调用abort函数时产生此信号。进程异常终止。
• SIGBUS 指示一个实现定义的硬件故障。
• SIGEMT 指示一个实现定义的硬件故障。
EMT这一名字来自PDP-11的emulator trap 指令。
• SIGFPE 此信号表示一个算术运算异常,例如除以0,浮点溢出等。
• SIGILL 此信号指示进程已执行一条非法硬件指令。
4.3BSD由abort函数产生此信号。SIGABRT现在被用于此。
• SIGIOT 这指示一个实现定义的硬件故障。
IOT这个名字来自于PDP-11对于输入/输出TRAP(input/output TRAP)指令的缩写。系统V的早期版本,由abort函数产生此信号。SIGABRT现在被用于此。
• SIGQUIT 当用户在终端上按退出键(一般采用Ctrl-\)时,产生此信号,并送至前台进
程组中的所有进程。此信号不仅终止前台进程组(如SIGINT所做的那样),同时产生一个core文件。
• SIGSEGV 指示进程进行了一次无效的存储访问。
名字SEGV表示“段违例(segmentation violation)”。
• SIGSYS 指示一个无效的系统调用。由于某种未知原因,进程执行了一条系统调用指令,
但其指示系统调用类型的参数却是无效的。
• SIGTRAP 指示一个实现定义的硬件故障。
此信号名来自于PDP-11的TRAP指令。
• SIGXCPU SVR4和4.3+BSD支持资源限制的概念。如果进程超过了其软C P U时间限制,则产生此信号。
• SIGXFSZ 如果进程超过了其软文件长度限制,则SVR4和4.3+BSD产生此信号。
摘自《UNIX环境高级编程》第10章 信号。
使用core文件调试程序
看下面的例子:
/*core_mp_test.c*/
#include
const char *str = "test";
void core_test(){
str[1] = 'T';
}
int main(){
core_test();
return 0;
}
编译:
gcc –g core_mp_test.c -o core_mp_test
如果需要调试程序的话,使用gcc编译时加上-g选项,这样调试core文件的时候比较容易找到错误的地方。
执行:
./core_mp_test
段错误
运行core_mp_test程序出现了“段错误”,但没有产生core文件。这是因为系统默认core文件的大小为0,所以没有创建。可以用ulimit命令查看和修改core文件的大小。
ulimit -c 0
ulimit -c 1000
ulimit -c 1000
-c 指定修改core文件的大小,1000指定了core文件大小。也可以对core文件的大小不做限制,如:
ulimit -c unlimited
ulimit -c unlimited
如果想让修改永久生效,则需要修改配置文件,如 .bash_profile、/etc/profile或/etc/security/limits.conf。
再次执行:
./core_mp_test
段错误 (core mped)
ls core.*
core.6133
可以看到已经创建了一个core.6133的文件.6133是core_mp_test程序运行的进程ID。
调式core文件
core文件是个二进制文件,需要用相应的工具来分析程序崩溃时的内存映像。
file core.6133
core.6133: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV), SVR4-style, from 'core_mp_test'
在Linux下可以用GDB来调试core文件。
gdb core_mp_test core.6133
GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)
Copyright 2003 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show ing" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux-gnu"...
Core was generated by `./core_mp_test'.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/tls/libc.so.6...done.
Loaded symbols for /lib/tls/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x080482fd in core_test () at core_mp_test.c:7
7 str[1] = 'T';
(gdb) where
#0 0x080482fd in core_test () at core_mp_test.c:7
#1 0x08048317 in main () at core_mp_test.c:12
#2 0x42015574 in __libc_start_main () from /lib/tls/libc.so.6
GDB中键入where,就会看到程序崩溃时堆栈信息(当前函数之前的所有已调用函数的列表(包括当前函数),gdb只显示最近几个),我们很容易找到我们的程序在最后崩溃的时候调用了core_mp_test.c 第7行的代码,导致程序崩溃。注意:在编译程序的时候要加入选项-g。您也可以试试其他命令,如fram、list等。更详细的用法,请查阅GDB文档。
core文件创建在什么位置
在进程当前工作目录的下创建。通常与程序在相同的路径下。但如果程序中调用了chdir函数,则有可能改变了当前工 作目录。这时core文件创建在chdir指定的路径下。有好多程序崩溃了,我们却找不到core文件放在什么位置。和chdir函数就有关系。当然程序 崩溃了不一定都产生core文件。
什么时候不产生core文件
在下列条件下不产生core文件:
( a )进程是设置-用户-ID,而且当前用户并非程序文件的所有者;
( b )进程是设置-组-ID,而且当前用户并非该程序文件的组所有者;
( c )用户没有写当前工作目录的许可权;
( d )文件太大。core文件的许可权(假定该文件在此之前并不存在)通常是用户读/写,组读和其他读。
利用GDB调试core文件,当遇到程序崩溃时我们不再束手无策。
2. Redhat Linux下如何生成core mp文件
在Redhat Linux系统中默认是不生成core mp文件的,这是因为在/etc/profile文件中有这灶码做样一行 ulimit -S -c 0 /dev/null 2&1 第一种方法是修改/etc/profile,把ulimit那一行改为 ulimit -S -c unlimited /dev/null 2&1 这样设置后系统允许所有用隐衡户生成没有大小限模槐制的core mp文件。这样做的优点是不需要重起系统,缺点是无法控制只让某些用户生成core mp文件。 * soft core 0 如果只想对某些用户或用户组打开core mp,可以加入 user soft core 0或@group soft core 0 注意如果通过修改/etc/security/limits.conf文件打开core mp,还需要注释掉/etc/profile中的ulmit那一行 #ulimit -S -c 0 /dev/null 2&1 这样修改的优点是可以针对特定用户或特定组打开core mp文件,缺点是需要重起系统。
3. Redhat Linux下如何生成core mp文件
在Redhat Linux系统中默认是不生成core mp文件的,这是因为在/etc/profile文件中有这样一行
ulimit -S -c 0 /dev/null 2&1
第一种方法是修改/etc/profile,把ulimit那一行改为
ulimit -S -c unlimited /dev/null 2&1
这样设置后系统允许所有用户生成没有大小限制的core mp文件。这样做的优点是不需要重起系统,缺点是无法控制只让某些用户生成core mp文件。
* soft core 0
如果只想对某些用户或用户组打开core mp,可以加入
user soft core 0或@group soft core 0
注意如果通过修改/etc/security/limits.conf文件打开core mp,还需要注释掉/etc/profile中的ulmit那一行
#ulimit -S -c 0 /dev/null 2&1
这样修改的优点是可以针对特定用户或特定组打开core mp文件,缺点是需要重起系统。
4. RedHat Linux下如何生成core mp文件
在linux平台下,设置core mp文件生成的方法:
1 )如何生成 coremp 文件
登陆 LINUX 服务器,任意位置键入
echo "ulimit -c 1024" >> /etc/profile
退出 LINUX 重新登陆 LINUX
键入 ulimit -c
如果显示 1024 那么说明 coremp 已经被开启。
1024 限制产生的 core 文件的大小不能超过 1024kb,可以使用参数unlimited,取消该限制
ulimit -c unlimited
2 ) . core 文件的简单介绍
在一个程序崩溃时,它一般会在指定目录下生成一个 core 文件。 core 文件仅仅是一个内存映象 ( 同时加上调试信息 ) ,主要是用来调试的。
3 ) . 开启或关闭 core 文件的生成
用以下命令来阻止系统生成 core 文件 :
ulimit -c 0
下面的命令可以检查生成 core 文件的选项是否打开 :
ulimit -a
该命令将显示所有的用户定制,其中选项 -a 代表“ all ”。
也可以修改系统文件来调整 core 选项
在 /etc/profile 通常会有这样一句话来禁止产生 core 文件,通常这种设置是合理的 :
# No core files by default
ulimit -S -c 0 > /dev/null 2>&1
但是在开发过程中有时为了调试问题,还是需要在特定的用户环境下打开 core 文件产生的设置。
在用户的 ~/.bash_profile 里加上 ulimit -c unlimited 来让特定的用户可以产生 core 文件。
如果 ulimit -c 0 则也是禁止产生 core 文件,而 ulimit -c 1024 则限制产生的 core 文件的大小不能超过 1024kb
4 ) . 设置 Core Dump 的核心转储文件目录和命名规则
/proc/sys/kernel/core_uses_pid 可以控制产生的 core 文件的文件名中是否添加 pid 作为扩展 ,如果添加则文件内容为 1 ,否则为 0
proc/sys/kernel/core_pattern 可以设置格式化的 core 文件保存位置或文件名 ,比如原来文件内容是 core-%e
可以这样修改 :
echo "/corefile/core-%e-%p-%t" > core_pattern
将会控制所产生的 core 文件会存放到 /corefile 目录下,产生的文件名为 core- 命令名 -pid- 时间戳
以下是参数列表 :
%p - insert pid into filename 添加 pid
%u - insert current uid into filename 添加当前 uid
%g - insert current gid into filename 添加当前 gid
%s - insert signal that caused the coremp into the filename 添加导致产生 core 的信号
%t - insert UNIX time that the coremp occurred into filename 添加 core 文件生成时的 unix 时间
%h - insert hostname where the coremp happened into filename 添加主机名
%e - insert coremping executable name into filename 添加命令名
6 ) . 一个小方法来测试产生 core 文件
直接输入指令 :
kill -s SIGSEGV $$
发生coremp一般都是在进程收到某个信号的时候,Linux上现在大概有60多个信号,可以使用 kill -l 命令全部列出来。
针对特定的信号,应用程序可以写对应的信号处理函数。如果不指定,则采取默认的处理方式, 默认处理是coremp的信号如下:
3)SIGQUIT 4)SIGILL 6)SIGABRT 8)SIGFPE 11)SIGSEGV 7)SIGBUS 31)SIGSYS
5)SIGTRAP 24)SIGXCPU 25)SIGXFSZ 29)SIGIOT
我们看到SIGSEGV在其中,一般数组越界或是访问空指针都会产生这个信号。另外虽然默认是这样的,但是你也可以写自己的信号处理函数改变默认行为。
上述内容只是产生coremp的必要条件,而非充分条件。要产生core文件还依赖于程序运行的shell,可以通过ulimit -a命令查看
5. 请教关于suse linux配置core mp的问题
应该是差不多的拉,fc有yum 这几天我在安装fc6,但是出问题了,提示刷新率回超出范围, 你可以都试试啊答,都说suse比其它版本的linux对硬件要求高些,还有他的3D桌面好像已经装好了,还是安装时很简单,不清楚,我没打开过,我的电脑是集成显卡
6. LINUX core mp怎么设置
ulimit -c 1000000
设置 core 文件大小限制为 1000000字节。
系统默认的一般是0,也就是禁止导出 core 文件。
7. Linux Dump 内存
Tools:Memory Imaging - Forensics Wiki
创建了mp文件 core.2071
曾经,Linux提供了两个虚拟设备 /dev/mem 和 /dev/kmem 用于mp内存,然而很多发行版基于安全因素没有开启。 /dev/mem 链接物理内存, /dev/kmem 映射整个虚拟内禅正存空间。
后来的Linux内核, /dev/kmem 不再使用。 /dev/mem 收到额外的限制,并且 /dev/mem 默认不开启。斗袭中
这些设备文件可以被dd或其他文件管理工具打开。
内存Dump工空山具:
注意,不要在未知内存写入数据,会导致系统崩溃。
8. 关闭linux core mp有什么作用
将错误内存访问的状态记族肆录下来,用来分析程序bug所在。
用gdb调晌配试可以打印 traceback,即内存方兆谨轿位错误的调用栈。
9. 如何查询和修改Linux操作系统生成core mp文件的默认路径
经过分析发现系统默认的core文件生成路径是/var/logs,但/var/logs目录并非系统自带的,系统初始安装默认自带的是/var/log,最终导致该系统出现core mp后并没能生成core文件,因此如何查询和修改系统默认的core mp文件生产路径呢?
方法如下:一. 查询core mp文件路径:
方法1: # cat /proc/sys/kerne怠珐糙貉孬股茬瘫长凯l/core_pattern。
方法2: # /sbin/sysctl kernel.core_pattern二. 修改core mp文件路径:
方法1:临时修改/proc/sys/kernel/core_pattern文件,但/proc目录本身是动态加载的,每次系统重启都会重新加载,因此这种方法只能作为临时修改。 /proc/sys/kernel/core_pattern 例:echo ‘/var/log/%e.core.%p’ > /proc/sys/kernel/core_pattern
方法2:永久修改:使戚睁辩用sysctl -w name=value命令。 例:高缺/sbin/sysctl -w kernel.core_pattern=/var/log/%e.core.%p为了更详尽的记录core mp当时的系统状态,可通过以下参数来丰富core文件的命早敬名: %% 单个%字符。
10. linux 下如何打开core mp文件开关
mp文件可以在程序crash时,方便我们查看程序crash的地方和上下文信息。在window下,要能生成mp文件,需要自己编写相应的代码。不过现在网上可以找到相应的代码,只要把它下载后然后加到自己的工程中去,就可以了! 在linux下面就简单的许多。只要打开相应的开关,linux会自动在程序crash时生成相应的core文件。这个文件和window下的mp文件类似。 下面是简单的一些步骤: 1.查看当前是否已经打开了此开关 通过命令:ulimit -c 如果输出为 0 ,则代表没有打开。如果为unlimited则已经打开了,就没必要在做打开。 2.通过命令打开 ulimit -c unlimited .然后通过步骤1,可以监测是否打开成功。 3.如果你要取消,很简单:ulimit -c 0 就可以了 通过上面的命令修改后,一般都只是对当前会话起作用,当你下次重新登录后,还是要重新输入上面的命令,所以很麻烦。我们可以把通过修改 /etc/profile文件 来使系统每次自动打开。步骤如下: 1.首先打开/etc/profile文件 一般都可以在文件中找到 这句语句:ulimit -S -c 0 /dev/null 2&1.ok,根据上面的例子,我们只要把那个0 改为 unlimited 就ok了。然后保存退出。 2.通过source /etc/profile 使当期设置生效。 3.通过ulimit -c 查看下是否已经打开。 其实不光这个命令可以加入到/etc/profile文件中,一些其他我们需要每次登录都生效的都可以加入到此文件中,因为登录时linux都会加载此文件。比如一些环境变量的设置。 还有一种方法可以通过修改/etc/security/limits.conf文件来设置,这个方法没有试过,也是网上看到。不过上面两种就可以了! 最后说一下生成core mp文件的位置,默认位置与可执行程序在同一目录下,文件名是core.***,其中***是一个数字。core mp文件名的模式保存在/proc/sys/kernel/core_pattern中,缺省值是core。通过以下命令可以更改core mp文件的位置(如希望生成到/tmp/cores目录下) echo “/tmp/cores/core” /proc/sys/kernel/core_pattern 设置完以后我们可以做个测试,写个程序,产生一个异常。然后看到当前目录会有个core*的文件。然后我们可以 gdb core。* 程序 进行调试。