导航:首页 > 编程系统 > linux000任务切换

linux000任务切换

发布时间:2023-03-04 10:28:19

1. linux进程的调度

上回书说到 Linux进程的由来 和 Linux进程的创建 ,其实在同一时刻只能支持有限个进程或线程同时运行(这取决于CPU核数量,基本上一个进程对应一个CPU),在一个运行的操作系统上可能运行着很多进程,如果运行的进程占据CPU的时间很长,就有可能导致其他进程饿死。为了解决这种问题,操作系统引入了 进程调度器 来进行进程的切换,轮流让各个进程使用CPU资源。

1)rq: 进程的运行队列( runqueue), 每个CPU对应一个 ,包含自旋锁(spinlock)、进程数量、用于公平调度的CFS信息结构、当前运行的进程描述符等。实际的进程队列用红黑树来维护(通过CFS信息结构来访问)。

2)cfs_rq: cfs调度的进程运行队列信息 ,包含红黑树的根结点、正在运行的进程指针、用于负载均衡的叶子队列等。

3)sched_entity: 把需要调度的东西抽象成调度实体 ,调度实体可以是进程、进程组、用户等。这里包含负载权重值、对应红黑树结点、 虚拟运行时vruntime 等。

4)sched_class:把 调度策略(算法)抽象成调度类 ,包含一组通用的调度操作接口。接口和实现是分离,可以根据调度接口去实现不同的调度算法,使一个Linux调度程序可以有多个不同的调度策略。

1) 关闭内核抢占 ,初始化部分变量。获取当前CPU的ID号,并赋值给局部变量CPU, 使rq指向CPU对应的运行队列 。 标识当前CPU发生任务切换 ,通知RCU更新状态,如果当前CPU处于rcu_read_lock状态,当前进程将会放入rnp-> blkd_tasks阻塞队列,并呈现在rnp-> gp_tasks链表中。 关闭本地中断 ,获取所要保护的运行队列的自旋锁, 为查找可运行进程做准备 。

2) 检查prev的状态,更新运行队列 。如果不是可运行状态,而且在内核态没被抢占,应该从运行队列中 删除prev进程 。如果是非阻塞挂起信号,而且状态为TASK_INTER-RUPTIBLE,就把该进程的状态设置为TASK_RUNNING,并将它 插入到运行队列 。

3)task_on_rq_queued(prev) 将pre进程插入到运行队列的队尾。

4)pick_next_task 选取将要执行的next进程。

5)context_switch(rq, prev, next)进行 进程上下文切换 。

1) 该进程分配的CPU时间片用完。

2) 该进程主动放弃CPU(例如IO操作)。

3) 某一进程抢占CPU获得执行机会。

Linux并没有使用x86 CPU自带的任务切换机制,需要通过手工的方式实现了切换。

进程创建后在内核的数据结构为task_struct , 该结构中有掩码属性cpus_allowed,4个核的CPU可以有4位掩码,如果CPU开启超线程,有一个8位掩码,进程可以运行在掩码位设置为1的CPU上。

Linux内核API提供了两个系统调用 ,让用户可以修改和查看当前的掩码:

1) sched_setaffinity():用来修改位掩码。

2) sched_getaffinity():用来查看当前的位掩码。

在下次task被唤醒时,select_task_rq_fair根据cpu_allowed里的掩码来确定将其置于哪个CPU的运行队列,一个进程在某一时刻只能存在于一个CPU的运行队列里。

在Nginx中,使用了CPU亲和度来完成某些场景的工作:

worker_processes      4;

worker_cpu_affinity 0001001001001000;

上面这个配置说明了4个工作进程中的每一个和一个CPU核挂钩。如果这个内容写入Nginx的配置文件中,然后Nginx启动或者重新加载配置的时候,若worker_process是4,就会启用4个worker,然后把worker_cpu_affinity后面的4个值当作4个cpu affinity mask,分别调用ngx_setaffinity,然后就把4个worker进程分别绑定到CPU0~3上。

worker_processes      2;

worker_cpu_affinity 01011010;

上面这个配置则说明了两个工作进程中的每一个和2个核挂钩。

2. 在Linux下,怎么切换目录

linux下可以使用CD命令切换目录。

pwd查看当前目录
cd/进入根目录
cd..返回上一级目录
cd~切换到当前目录的家目录
cd~/chenwei切换到用户chenwei的家目录
cd-将当前目录切换到上一个工作目录

3. Linux 进程管理之进程调度与切换

我们知道,进程运行需要各种各样的系统资源,如内存、文件、打印机和最

宝贵的 CPU 等,所以说,调度的实质就是资源的分配。系统通过不同的调度算法(Scheling Algorithm)来实现这种资源的分配。通常来说,选择什么样的调度算法取决于资源分配的策略(Scheling Policy)。

有关调度相关的结构保存在 task_struct 中,如下:

active_mm 是为内核线程而引入的,因为内核线程没有自己的地址空间,为了让内核线程与普通进程具有统一的上下文切换方式,当内核线程进行上下文切换时,让切换进来的线程的 active_mm 指向刚被调度出去的进程的 active_mm(如果进程的mm 域不为空,则其 active_mm 域与 mm 域相同)。

在 linux 2.6 中 sched_class 表示该进程所属的调度器类有3种:

进程的调度策略有5种,用户可以调用调度器里不同的调度策略:

在每个 CPU 中都有一个自身的运行队列 rq,每个活动进程只出现在一个运行队列中,在多个 CPU 上同时运行一个进程是不可能的。

运行队列是使用如下结构实现的:

tast 作为调度实体加入到 CPU 中的调度队列中。

系统中所有的运行队列都在 runqueues 数组中,该数组的每个元素分别对应于系统中的一个 CPU。在单处理器系统中,由于只需要一个就绪队列,因此数组只有一个元素。

内核也定义了一下便利的宏,其含义很明显。

Linux、c/c++服务器开发篇-------我们来聊聊进程的那些事

Linux内核 进程间通信组件的实现

学习地址:C/C++Linux服务器开发/后台架构师【零声教育】-学习视频教程-腾讯课堂

需要C/C++ Linux服务器架构师学习资料加qun812855908获取(资料包括 C/C++,Linux,golang技术,Nginx,ZeroMQ,MySQL,Redis,fastdfs,MongoDB,ZK,流媒体,CDN,P2P,K8S,Docker,TCP/IP,协程,DPDK,ffmpeg 等),免费分享

在分析调度流程之前,我们先来看在什么情况下要执行调度程序,我们把这种情况叫做调度时机。

Linux 调度时机主要有。

时机1,进程要调用 sleep() 或 exit() 等函数进行状态转换,这些函数会主动调用调度程序进行进程调度。

时机2,由于进程的时间片是由时钟中断来更新的,因此,这种情况和时机4 是一样的。

时机3,当设备驱动程序执行长而重复的任务时,直接调用调度程序。在每次反复循环中,驱动程序都检查 need_resched 的值,如果必要,则调用调度程序 schele() 主动放弃 CPU。

时机4 , 如前所述, 不管是从中断、异常还是系统调用返回, 最终都调用 ret_from_sys_call(),由这个函数进行调度标志的检测,如果必要,则调用调用调度程序。那么,为什么从系统调用返回时要调用调度程序呢?这当然是从效率考虑。从系统调用返回意味着要离开内核态而返回到用户态,而状态的转换要花费一定的时间,因此,在返回到用户态前,系统把在内核态该处理的事全部做完。

Linux 的调度程序是一个叫 Schele() 的函数,这个函数来决定是否要进行进程的切换,如果要切换的话,切换到哪个进程等。

代码分析来看,Schele 主要完成了2个功能:

进程上下文切换包括进程的地址空间的切换和执行环境的切换。

对于 switch_mm 处理,关键的一步就是它将新进程页面目录的起始物理地址装入到寄存器 CR3 中。CR3 寄存器总是指向当前进程的页面目录。

switch_to 把寄存器中的值比如esp等存放到进程thread结构中,保存现场一边后续恢复,同时调用 __switch_to 完成了堆栈的切换。

在进程的 task_struct 结构中有个重要的成分 thread,它本身是一个数据结构 thread_struct, 里面记录着进程在切换时的(系统空间)堆栈指针,取指令地址(也就是“返回地址”)等关键性的信息。

关于__switch_to 的工作就是处理 TSS (任务状态段)。

TSS 全称task state segment,是指在操作系统进程管理的过程中,任务(进程)切换时的任务现场信息。

linux 为每一个 CPU 提供一个 TSS 段,并且在 TR 寄存器中保存该段。

linux 中之所以为每一个 CPU 提供一个 TSS 段,而不是为每个进程提供一个TSS 段,主要原因是 TR 寄存器永远指向它,在任务切换的适合不必切换 TR 寄存器,从而减小开销。

在从用户态切换到内核态时,可以通过获取 TSS 段中的 esp0 来获取当前进程的内核栈 栈顶指针,从而可以保存用户态的 cs,esp,eip 等上下文。

TSS 在任务切换过程中起着重要作用,通过它实现任务的挂起和恢复。所谓任务切换是指,挂起当前正在执行的任务,恢复或启动另一任务的执行。

在任务切换过程中,首先,处理器中各寄存器的当前值被自动保存到 TR(任务寄存器)所指定的任务的 TSS 中;然后,下一任务的 TSS 被装入 TR;最后,从 TR 所指定的 TSS 中取出各寄存器的值送到处理器的各寄存器中。由此可见,通过在 TSS 中保存任务现场各寄存器状态的完整映象,实现任务的切换。

因此,__switch_to 核心内容就是将 TSS 中的内核空间(0级)堆栈指针换成 next->esp0。这是因为 CPU 在穿越中断门或者陷阱门时要根据新的运行级别从TSS中取得进程在系统空间的堆栈指针。

thread_struct.esp0 指向进程的系统空间堆栈的顶端。当一个进程被调度运行时,内核会将这个变量写入 TSS 的 esp0 字段,表示这个进程进入0级运行时其堆栈的位置。换句话说,进程的 thread_struct 结构中的 esp0 保存着其系统空间堆栈指针。当进程穿过中断门、陷阱门或者调用门进入系统空间时,处理器会从这里恢复期系统空间栈。

由于栈中变量的访问依赖的是段、页、和 esp、ebp 等这些寄存器,所以当段、页、寄存器切换完以后,栈中的变量就可以被访问了。

因此 switch_to 完成了进程堆栈的切换,由于被切进的进程各个寄存器的信息已完成切换,因此 next 进程得以执行指令运行。

由于 A 进程在调用 switch_to 完成了与 B 进程堆栈的切换,也即是寄存器中的值都是 B 的,所以 A 进程在 switch_to 执行完后,A停止运行,B开始运行,当过一段时间又把 A 进程切进去后,A 开始从switch_to 后面的代码开始执行。

schele 的调用流程如下:





4. Linux系统如何切换前台进程和后台进程

一、Shell支持作用控制,有以下命令:
1. command &让进程在后台运行
2. jobs –l 查看后台运行的进程
3. fg %n 让后台运行的进程n到前台来
4. bg %n 让进程n到后台去;
PS:“n”为jobs查看到的进程编号。
二、执行命令&切换至后台
在Linux终端运行命令的时候,在命令末尾加上&符号,就可以让程序在后台运行
root@Ubuntu$ 。/tcpserv01&
三、切换正在运行的程序到后台
如果程序正在前台运行,可以使用Ctrl+z 选项把程序暂停,然后用 bg %[number]命令把这个程序放到后台运行,这个步骤分为3步,如下:
1.暂停程序运行CTRL+Z
ctrl + z跟系统任务有关的,ctrl + z可以将一个正在前台执行的命令放到后台,并且暂停。
[Oracle@linuxidc ~]$ sh ins.sh
[1]+Stopped ins.sh
2.查看暂停的程序
察看jobs使用jobs或ps命令可以察看正在执行的jobs。
[oracle@linuxidc ~]$ jobs -l
[1]+ 4524Stopped ins.sh
jobs命令执行的结果,+表示是一个当前的作业,减号表是是当前作业之后的一个作业。
jobs -l选项可显示所有任务的PID,jobs的状态可以是running, stopped,Terminated
3.切换程序至后台
bg将一个在后台暂停的命令,变成继续执行如果后台中有多个命令,可以用bg %jobnumber将选中的命令调出。
[oracle@linuxidc ~]$ bg %1
[oracle@linuxidc ~]$ jobs -l
[1]+ 4524Running ins.sh
4.切换程序至前台
也可以用 fg %[number]指令把一个程序掉到前台运行
[oracle@linuxidc ~]$ fg %1
。/tcpserv01
5.终止后台程序
也可以直接终止后台运行的程序,使用 kill 命令
[oracle@linuxidc ~]$ kill %1
但是如果任务被终止了(kill),shell 从当前的shell环境已知的列表中删除任务的进程标识;也就是说,jobs命令显示的是当前shell环境中所起的后台正在运行或者被挂起的任务信息。

5. linux 性能优化-- cpu 切换以及cpu过高

本文先介绍了cpu上下文切换的基础知识,以及上下文切换的类型(进程,线程等切换)。然后介绍了如何查看cpu切换次数的工具和指标的解释。同时对日常分析种cpu过高的情况下如何分析和定位的方法做了一定的介绍,使用一个简单的案例进行分析,先用top,pidstat等工具找出占用过高的进程id,然后通过分析到底是用户态cpu过高,还是内核态cpu过高,并用perf 定位到具体的调用函数。(来自极客时间课程学习笔记)

1、多任务竞争CPU,cpu变换任务的时候进行CPU上下文切换(context switch)。CPU执行任务有4种方式:进程、线程、或者硬件通过触发信号导致中断的调用。

2、当切换任务的时候,需要记录任务当前的状态和获取下一任务的信息和地址(指针),这就是上下文的内容。因此,上下文是指某一时间点CPU寄存器(CPU register)和程序计数器(PC)的内容, 广义上还包括内存中进程的虚拟地址映射信息.

3、上下文切换的过程:

4、根据任务的执行形式,相应的下上文切换,有进程上下文切换、线程上下文切换、以及中断上下文切换三类。

5、进程和线程的区别:
进程是资源分配和执行的基本单位;线程是任务调度和运行的基本单位。线程没有资源,进程给指针提供虚拟内存、栈、变量等共享资源,而线程可以共享进程的资源。

6、进程上下文切换:是指从一个进程切换到另一个进程。

(1)进程运行态为内核运行态和进程运行态。内核空间态资源包括内核的堆栈、寄存器等;用户空间态资源包括虚拟内存、栈、变量、正文、数据等

(2)系统调用(软中断)在内核态完成的,需要进行2次CPU上下文切换(用户空间-->内核空间-->用户空间),不涉及用户态资源,也不会切换进程。

(3)进程是由内核来管理和调度的,进程的切换只能发生在内核态。所以,进程的上下文不仅包括了用户空间的资源,也包括内核空间资源。

(4)进程的上下文切换过程:

(5)、下列将会触发进程上下文切换的场景:

7、线程上下文切换:

8、中断上下文切换
快速响应硬件的事件,中断处理会打断进程的正常调度和执行。同一CPU内,硬件中断优先级高于进程。切换过程类似于系统调用的时候,不涉及到用户运行态资源。但大量的中断上下文切换同样可能引发性能问题。

重点关注信息:

系统的就绪队列过长,也就是正在运行和等待 CPU 的进程数过多,导致了大量的上下文切换,而上下文切换又导致了系统 CPU 的占用率升高。

这个结果中有两列内容是我们的重点关注对象。一个是 cswch ,表示每秒自愿上下文切换(voluntary context switches)的次数,另一个则是 nvcswch ,表示每秒非自愿上下文切换(non voluntary context switches)的次数。

linux的中断使用情况可以从 /proc/interrupts 这个只读文件中读取。/proc 实际上是 Linux 的一个虚拟文件系统,用于内核空间与用户空间之间的通信。/proc/interrupts 就是这种通信机制的一部分,提供了一个只读的中断使用情况。

重调度中断(RES),这个中断类型表示,唤醒空闲状态的 CPU 来调度新的任务运行。这是多处理器系统(SMP)中,调度器用来分散任务到不同 CPU 的机制,通常也被称为处理器间中断(Inter-Processor Interrupts,IPI)。

这个数值其实取决于系统本身的 CPU 性能。如果系统的上下文切换次数比较稳定,那么从数百到一万以内,都应该算是正常的。但当上下文切换次数超过一万次,或者切换次数出现数量级的增长时,就很可能已经出现了性能问题。这时,需要根据上下文切换的类型,再做具体分析。

比方说:

首先通过uptime查看系统负载,然后使用mpstat结合pidstat来初步判断到底是cpu计算量大还是进程争抢过大或者是io过多,接着使用vmstat分析切换次数,以及切换类型,来进一步判断到底是io过多导致问题还是进程争抢激烈导致问题。

CPU 使用率相关的重要指标:

性能分析工具给出的都是间隔一段时间的平均 CPU 使用率,所以要注意间隔时间的设置,特别是用多个工具对比分析时,你一定要保证它们用的是相同的间隔时间。比如,对比一下 top 和 ps 这两个工具报告的 CPU 使用率,默认的结果很可能不一样,因为 top 默认使用 3 秒时间间隔,而 ps 使用的却是进程的整个生命周期。

top 和 ps 是最常用的性能分析工具:

这个输出结果中,第三行 %Cpu 就是系统的 CPU 使用率,top 默认显示的是所有 CPU 的平均值,这个时候你只需要按下数字 1 ,就可以切换到每个 CPU 的使用率了。继续往下看,空白行之后是进程的实时信息,每个进程都有一个 %CPU 列,表示进程的 CPU 使用率。它是用户态和内核态 CPU 使用率的总和,包括进程用户空间使用的 CPU、通过系统调用执行的内核空间 CPU 、以及在就绪队列等待运行的 CPU。在虚拟化环境中,它还包括了运行虚拟机占用的 CPU。

预先安装 stress 和 sysstat 包,如 apt install stress sysstat。

stress 是一个 Linux 系统压力测试工具,这里我们用作异常进程模拟平均负载升高的场景。而 sysstat 包含了常用的 Linux 性能工具,用来监控和分析系统的性能。我们的案例会用到这个包的两个命令 mpstat 和 pidstat。

下面的 pidstat 命令,就间隔 1 秒展示了进程的 5 组 CPU 使用率,

包括:

perf 是 Linux 2.6.31 以后内置的性能分析工具。它以性能事件采样为基础,不仅可以分析系统的各种事件和内核性能,还可以用来分析指定应用程序的性能问题。

第一种常见用法是 perf top,类似于 top,它能够实时显示占用 CPU 时钟最多的函数或者指令,因此可以用来查找热点函数,使用界面如下所示:

输出结果中,第一行包含三个数据,分别是采样数(Samples)如2K、事件类型(event)如cpu-clock:pppH和事件总数量(Event count)如:371909314。

第二种常见用法,也就是 perf record 和 perf report。 perf top 虽然实时展示了系统的性能信息,但它的缺点是并不保存数据,也就无法用于离线或者后续的分析。而 perf record 则提供了保存数据的功能,保存后的数据,需要你用 perf report 解析展示。

1.启动docker 运行进程:

2.ab工具测试服务器性能
ab(apache bench)是一个常用的 HTTP 服务性能测试工具,这里用来模拟 Ngnix 的客户端。

3.分析过程

CPU 使用率是最直观和最常用的系统性能指标,在排查性能问题时,通常会关注的第一个指标。所以更要熟悉它的含义,尤其要弄清楚:

这几种不同 CPU 的使用率。比如说:

碰到 CPU 使用率升高的问题,你可以借助 top、pidstat 等工具,确认引发 CPU 性能问题的来源;再使用 perf 等工具,排查出引起性能问题的具体函数.

阅读全文

与linux000任务切换相关的资料

热点内容
香港有苹果翻新机吗 浏览:15
c读取文件的行数 浏览:59
重庆少儿编程哪里好 浏览:568
nes游戏在哪个文件夹里 浏览:643
ps怎么剪贴到别的文件 浏览:352
如何导出文件 浏览:595
apk中的xml文件 浏览:239
umeng打包工具 浏览:765
g76锥度牙怎么编程 浏览:430
win10企业版关机很慢 浏览:163
微信短视频是保存在哪个文件夹 浏览:985
win10打印机设置纸张大小设置 浏览:427
卫星测控数据有哪些 浏览:451
格式工厂330教程 浏览:421
童美编程课怎么样 浏览:40
网页代码调试器 浏览:54
读取文件string 浏览:500
ug自动编程软件怎么画数控图 浏览:920
什么网站可以介绍主机 浏览:340
移动短信查询代码 浏览:192

友情链接