导航:首页 > 编程系统 > linuxpae64

linuxpae64

发布时间:2023-02-04 23:31:08

linux 32位和64位的区别

第一、设计初衷不同
64位是为视频、绘画、高性能应用程序所设计开发的;32位是为普通用户开发的。
第二、配置要求不同
64位操作系统只能安装在64位电脑上,32位操作系统可以安装在64位电脑上。
32位操作系统安装在64位电脑上,其硬件恰似大车拉小车,这样64位硬件性能会大打折扣。
第三、运算速度不同
64位CPU的数据宽度为64位,64位指令集可以运行64位数据指令,也就是说处理器一次可提取64位数据。比32位提高了一倍,理论上性能会相应提升1倍。
第四、寻址能力不同
在Linux下32位系统不打开PAE的情况下,只能支持4G内存。
32位系统最大只能支持3.2g左右内存,而64位系统支持高达128g的物理内存和多达16TB的虚拟内存。
第五、软件普及不同
64位软件相较32位软件少。

⑵ 32位linux能支持的最大物理内存有多少

32位linux不打开PAE,则最多只能识别出4GB内存,若打开PAE,则最多可以识别出64GB内存。但是 32位系统下的进程一次最多只能寻址4GB的空间。

64位linux则没有32位系统的限制。因此对于内存大于4GB的机器来说,最好安装64位系统。

简单介绍下如何让redhat 5-32位支持4G以上内存。

步骤1:

安装kernel-PAE.i686 内核包,让系统内核支持PAE物理地址扩展。

rpm-ivh kernel-PAE-2.6.18-53.el5.i686.rpm 安装的时候会报如下警告。

⑶ 详解Linux系统内存知识及调优方案

内存是计算机中重要的部件之一,它是与CPU进行沟通的桥梁。计算机中所有程序的运行都是在内存中进行的,因此内存的性能对计算机的影响非常大。内存作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来,内存的运行也决定了计算机的稳定运行。对于整个操作系统来说,内存可能是最麻烦的的设备。而其性能的好坏直接影响着整个操作系统。

我们知道CPU是不能与硬盘打交道的,只有数据被载入到内存中才可以被CPU调用。cpu在访问内存的时候需要先像内存监控程序请求,由监控程序控制和分配内存的读写请求,这个监控程序叫做MMU(内存管理单元)。下面以32位系统来说明内存的访问过程:

32位的系统上每一个进程在访问内存的时候,每一个进程都当做自己有4个G的内存空间可用,这叫虚拟内存(地址),虚拟内存转化成物理内存是通过MMU来完成的。为了能够从线性地址转换成物理地址,需要page table(页表)的内存空间,page table要载入到MMU上。为了完成线性地址到物理地址的映射,如果按照1个字节1个字节映射的话,需要一张非常大的表,这种转换关系会非常的复杂。因此把内存空间又划分成了另外一种存储单元格式,通常为4K。在不同的硬件平台上,它们的大小一般是不一样的,像x86 32位的有4k的页;而64位的有4k页,2M页,4M页,8M页等等,默认都是4k的。每一个进程一般而言都有自己的页路径和页表映射机制,不管那一个页表都是由内核加载的。每一个进程只能看到自己的线性地址空间,想要增加新的内存的时候,只能在自己的线性地址空间中申请,并且申请后一定是通过操作系统的内核映射到物理地址空间中去找那么一段空间,并且告诉线性地址空间准备好了,可以访问,并且在page table中增加一条映射关系,于是就可以访问物理内存了,这种叫做内存分配。但是新的申请一定是通过操作的内核到物理内存中去找那么一段空间,并且告诉线性地址空间好了,可以建设映射关系,最终page table建立映射关系。

这反映了上述描述过程的大体情况。可以看到每一个用户程序都会有自己的页表,并且映射到对应的主存储器上去。

根据上述文字和图表的描述可以发现2个问题:

1.每个进程如果需要访问内存的时候都需要去查找page table的话,势必会造成服务器的性能底下

2.如果主存储器的内存满了以后,应用程序还需要调用内存的时候怎么办

对于第一个问题,我们就需要借助TLB(Translation Lookaside Buffer)翻译后备缓冲器。TLB是一个内存管理单元,它可以用于改进虚拟地址到物理地址转换速度的缓存。这样每次在查找page table的时候就可以先去TLB中查找相应的页表数据,如果有就直接返回,没有再去查找page table,并把查找到的结果缓存中TLB中。TLB虽然解决了缓存的功能,但是在那么page table中查找映射关系仍然很慢,所以又有了page table的分级目录。page table可以分为1级目录,2级目录和偏移量

但是一个进程在运行的时候要频繁的打开文件,关闭文件。这就意味着要频繁的申请内存和释放内存。有些能够在内存中缓存数据的那些进程,他们对内存的分配和回收更多,那么每一次分配都会在页表中建立一个对应项。所以,就算内存的速度很快,大量频繁的同一时间分配和释放内存,依然会降低服务器的整体性能。当然内存空间不够用的时候,我们称为oom(out of memory,内存耗尽)。当内存耗尽的时候,,整个操作系统挂了。这种情况下我们可以考虑交换分区,交换分区毕竟是由硬盘虚拟出来的内存,所以其性能与真正的内存相比,差了很多,所以要尽力避免使用交换分区。有物理内存空间的时候尽量保证全部使用物理内存。cpu无论如何是不能给交换内存打交道的,它也只能给物理内存打交道,能寻址的空间也只能是物理内存。所以当真正物理内存空间不够用的时候,会通过LRU算法把其中最近最少使用的内存放到交换内存中去,这样物理内存中的那段空间就可以供新的程序使用了。但是这样会引发另外的一个问题,即原来的进程通过page table寻找的时候,那一段空间的数据已经不属于它了。所以此刻cpu发送通知或者异常告诉这个程序,这个地址空间已不属于它,这个时候可能会出现2种情况:

1.物理内存有可用的空间可用:这个时候cpu会根据以前的转换策略会把交换分区中的那段内存重新送到物理内存中去,但是转换过来的空间地址不一定会是以前的那一段空间地址,因为以前的那一段空间地址可能已经被别人使用了。

2.物理内存没有可用的空间可用:这个时候依然会使用LRU算发把当前物理地址空间上最近最少使用的空间地址转换到交换内存中去,并把当前进程需要的这断在交换空间中的内存送到物理内存空间中去,并且重新建立映射关系。

上述通知或者异常出现的情况,通常叫做缺页异常。缺页异常也分为大异常和小异常两种。大异常就是访问的数据内存中没有,不的不去硬盘上加载,无论是从交换内存中还是直接从磁盘的某个文件系统上,反正需要从硬盘上去加载,这种异常加载需要很长时间。小异常就是进程之间通过共享内存,第二个进程访问的时候,查看本地的内存映射表没有,但是其它进程已经拥有了这个内存页,所以可以直接映射,这种异常加载需要的时间一般很短。

在操作系统开机的时候,每一个io设备都会像cpu申请一些列的随机端口,这种端口叫做io端口。在IBM PC体系结构中,I/O地址空间一共提供了65,536个8位的I/O端口。正是这些io端口的存在,cpu可以与io设备进行读写交互的过程。在执行读写操作时,CPU使用地址总线选择所请求的I/O端口,使用数据总线在CPU寄存器和端口之间传送数据。I/O端口还可以被映射到物理地址空间:因此,处理器和I/O设备之间的通信就可以直接使用对内存进行操作的汇编语言指令(例如,mov、and、or等等)。现代的硬件设备更倾向于映射I/O,因为这样处理的速度较快,并可以和DMA结合起来使用。这样io在和内存传数据的时候就不需要通过cpu,cpu把总线的控制权交给DMA,每次io传数据的时候就调用DMA一次,就把cpu给解放了出来。当数据传输完了以后,DMA通知给cpu中断一次。DMA在运行的时候对整个总线有控制权限,当cpu发现有其它进程需要使用总线的时候,二者就会产生争用。这个时候,在总线控制权的使用上,CPU和DMA具有相等的权限。只要CPU委托给了DMA,就不能随意的收回这个委托,就要等待DMA的用完。

如果没有其它进程可以运行,或者其它进程运行的时间非常短,这个时候CPU发现我们的IO仍然没有完成,那就意味着,CPU只能等待IO了。CPU在时间分配里面有个iowait的值,就是CPU在等待IO花费的时间。有些是在同步调用过程中,CPU必须要等待IO的完成;否者CPU可以释放IO的传输在背后自动完成,CPU自己去处理其它的事情。等硬盘数据传输完成以后,硬盘只需要像CPU发起一个通知即可。CPU外围有一种设备,这个设备叫做可编程中断控制器。每一个硬件设备为了给CPU通信,在刚开机的时候,在BIOS实现检测的时候,这个设备就要到可编程中断控制器上去注册一个所谓的中断号。那么这个号码就归这个硬件使用了。当前主机上可能有多个硬件,每一个硬件都有自己的号码,CPU在收到中断号以后,就能够通过中断相量表查找到那个硬件设备进行中断。并且就由对应的IO端口过来处理了。

CPU正在运行其它进程,当一个中断请求发过来的时候,CPU会立即终止当前正在处理的进程,而去处理中断。当前CPU挂起当前正在处理的进程,转而去执行中断的过程,也叫做中断切换。只不过,这种切换在量级别上比进程切换要低一些,而且任何中断的优先级通常比任何进程也要高,因为我们指的是硬件中断。中断还分为上半部和下半部,一般而言,上半部就是CPU在处理的时候,把它接进来,放到内存中,如果这个事情不是特别紧急(CPU或者内核会自己判断),因此在这种情况下,CPU回到现场继续执行刚才挂起的进程,当这个进程处理完了,再回过头来执行中断的下半部分。

在32位系统中,我们的内存(线性地址)地址空间中,一般而言,低地址空间有一个G是给内核使用的,上面3个G是给进程使用的。但是应该明白,其实在内核内存当中,再往下,不是直接这样划分的。32位系统和64位系统可能不一样(物理地址),在32位系统中,最低端有那么10多M的空间是给DMA使用的。DNA的总线宽度是很小的,可能只有几位,所以寻址能力很有限,访问的内存空间也就很有限。如果DMA需要复制数据,而且自己能够寻址物理内存,还可以把数据直接壮哉进内存中去,那么就必须保证DMA能够寻址那段内存才行。寻址的前提就是把最低地址断M,DA的寻址范围内的那一段给了DMA。所以站在这个角度来说,我们的内存管理是分区域的。

在32位系统上,16M的内存空间给了ZONE_DMA(DMA使用的物理地址空间);从16M到896M给了ZONE_NORMAL(正常物理地址空间),对于Linux操作系统来说,是内核可以直接访问的地址空间;从896M到1G这断空间叫做"Reserved"(预留的物理地址空间);从1G到4G的这段物理地址空间中,我们的内核是不能直接访问的,要想访问必须把其中的一段内容映射到Reserved来,在Reserved中保留出那一段内存的地址编码,我们内核才能上去访问,所以内核不直接访问大于1G的物理地址空间。所以在32位系统上,它访问内存当中的数据,中间是需要一个额外步骤的。

在64位系统上,ZONE_DAM给了低端的1G地址空间,这个时候DMA的寻址能力被大大加强了;ZONE_DAM32可以使用4G的空间;而大于1G以上给划分了ZONE_NORMAL,这段空间都可以被内核直接访问。所以在64位上,内核访问大于1G的内存地址,就不需要额外的步骤了,效率和性能上也大大增加,这也就是为什么要使用64位系统的原因。

在现在的PC架构上,AMD,INTER都支持一种机制,叫做PEA(物理地址扩展)。所谓PAE。指的是在32位系统的地址总线上,又扩展了4位,使得32位系统上的地址空间可以达到64G。当然在32为系统上,不管你的物理内存有多大,单个进程所使用的空间是无法扩展的。因为在32位的系统上,线性地址空间只有4个G,而单个进程能够识别的访问也只有3个G。

linux的虚拟内存子系统包含了以下几个功能模块:

slab allocator,zoned buddy allocator,MMU,kswapd,bdflush

slab allocator叫做slab分配器

buddy allocator又叫做buddy system,叫做伙伴系统,也是一种内存分配器

buddy system是工作在MMU之上的,而slab allocator又是工作在buddy system之上的。

设置为小于等于1G,在数据库服务器应该劲量避免使用交换内存

3.在应用服务器上,可以设置为RAM*0.5,当然这个是理论值

如果不的不使用交换内存,应该把交换内存放到最靠外的磁道分区上,因为最外边的磁盘的访问速度最快。所以如果有多块硬盘,可以把每块硬盘的最外层的磁道拿一小部分出来作为交换分区。交换分区可以定义优先级,因此把这些硬盘的交换内存的优先级设置为一样,可以实现负载均衡的效果。定义交换分区优先级的方法为编辑/etc/fstab:

/dev/sda1 swap swap pri=5 0 0

/dev/sdb1 swap swap pri=5 0 0

/dev/sdc1 swap swap pri=5 0 0

/dev/sdd1 swap swap pri=5 0 0

四.内存耗尽时候的相关调优参数

当Linux内存耗尽的时候,它会杀死那些占用内存最多的进程,以下三种情况会杀死进程:

1.所有的进程都是活动进程,这个时候想交换出去都没有空闲的进程

2.没有可用的page页在ZONE_NORMAL中

3.有其它新进程启动,申请内存空间的时候,要找一个空闲内存给做映射,但是这个时候找不到了

一旦内存耗尽的时候,操作系统就会启用oom-kill机制。

在/proc/PID/目录下有一个文件叫做oom_score,就是用来指定oom的评分的,就是坏蛋指数。

如果要手动启用oom-kill机制的话,只需要执行echo f>/proc/sysrq-trigger即可,它会自动杀掉我们指定的坏蛋指数评分最高的那个进程

可以通过echo n > /proc/PID/oom_adj来调整一个进程的坏蛋评分指数。最终的评分指数就是2的oom_adj的值的N次方。假如我们的一个进程的oom_adj的值是5,那么它的坏蛋评分指数就是2的5次方。

如果想禁止oom-kill功能的使用可以使用vm.panic_on_oom=1即可。

五.与容量有关的内存调优参数:

overcommit_memory,可用参数有3个,规定是否能够过量使用内存:

0:默认设置,内核执行启发式的过量使用处理

1:内核执行无内存的过量使用处理。使用这个值会增大内存超载的可能性

2:内存的使用量等于swap的大小+RAM*overcommit_ratio的值。如果希望减小内存的过度使用,这个值是最安全的

overcommit_ratio:将overcommit_memory指定为2时候,提供的物理RAM比例,默认为50

六.与通信相关的调优参数

常见在同一个主机中进行进程间通信的方式:

1.通过消息message;2.通过signal信号量进行通信;3.通过共享内存进行通信,跨主机常见的通信方式是rpc

以消息的方式实现进程通信的调优方案:

msgmax:以字节为单位规定消息队列中任意消息的最大允许大小。这个值一定不能超过该队列的大小(msgmnb),默认值为65536

msgmnb:以字节为单位规定单一消息队列的最大值(最大长度)。默认为65536字节

msgmni:规定消息队列识别符的最大数量(及队列的最大数量)。64位架构机器的默认值为1985;32位架构机器的默认值为1736

以共享内存方式实现进程通信的调优方案:

shmall:以字节为单位规定一次在该系统中可以使用的共享内存总量(单次申请的上限)

shmmax:以字节为单位规定每一个共享内存片段的最大大小

shmmni:规定系统范围内最大共享内存片段。在64和32位的系统上默认值都是4096

七.与容量相关的文件系统可调优参数:

file-max:列出内核分配的文件句柄的最大值

dirty_ratio:规定百分比值,当脏数据达到系统内存总数的这个百分比值后开始执行pdflush,默认为20

dirty_background_ratio:规定百分比值,当某一个进程自己所占用的脏页比例达到系统内存总数的这个百分比值后开始在后台执行pdflush,默认为10

dirty_expire_centisecs:pdlush每隔百分之一秒的时间开启起来刷新脏页,默认值为3000,所以每隔30秒起来开始刷新脏页

dirty_writeback_centisecs:每隔百分之一秒开始刷新单个脏页。默认值为500,所以一个脏页的存在时间达到了5秒,就开始刷新脏

八.linux内存常用的观察指标命令:

Memory activity

vmstat [interval] [count]

sar -r [interval] [count]

Rate of change in memory

sar -R [interval] [count]

frmpg/s:每秒释放或者分配的内存页,如果为正数,则为释放的内存页;如果为负数,则为分配的内存页

bufpg/s:每秒buffer中获得或者释放的内存页。如果为正数则为获得的内存页,为负数。则为释放的内存页

campg/s:每秒cache中获得或者释放的内存页。如果为正数则为获得的内存页,为负数。则为释放的内存页

Swap activity

sar -W [interval] [count]

ALL IO

sar -B [interval] [count]

pgpgin/s:每秒从磁盘写入到内核的块数量

pgpgout/s:每秒从内核写入到磁盘的块数量

fault/s:每秒钟出现的缺页异常的个数

majflt/s:每秒钟出现的大页异常的个数

pgfree/s:每秒回收回来的页面个数

⑷ linux32位系统不能完全使用4GB内存,加了PAE就可以显示,而64位系统直接完全使用4GB,为什么

因为人家就是这么来设计的源。首先现在的操作系统,对于程序来说,内存地址都是“虚拟”的。

32 位系统虽然寻址是 4G ,但其实 3G+ 部分是系统特殊内存位置,是对一些硬件和驱动的存储区域模拟以及系统共享的程序代码内存的位置转接。
所以 32 位系统就有了 PAE 寻址功能,也就是另外有 4bit 的内存寻址寄存器实现 64G 内存的支持。
但 PAE 寻址需要系统和软件的同时支持才行。因为这部是本身的基础设计,而是针对技术发展的扩展。所以原先的 3G+ 位置特殊用途的设计是保留的,PAE 用特殊的方法绕过了 3G+ 的内存访问。保留 3G+ 特殊用途的特点从而实现兼容原先不支持 PAE 的软件。
所以不支持 PAE ,系统就没办法3G+那部分内存做寻址提供使用。

至于 x86-64 位系统,本来他的寄存器就是 64 位的,所以实际理论是 4G x 4G = 16EB 的内存可以进行支持。但实际现在的 64 位只使用了 64 位内存位置中的 48 位。也就是 256TB 的内存支持。
对于 256T 的内存支持水平来说,64G 不过是小菜一碟而已。

⑸ Linux进程内存如何管理

Linux内存管理
摘要:本章首先以应用程序开发者的角度审视Linux的进程内存管理,在此基础上逐步深入到内核中讨论系统物理内存管理和内核内存的使用方法。力求从外到内、水到渠成地引导网友分析Linux的内存管理与使用。在本章最后,我们给出一个内存映射的实例,帮助网友们理解内核内存管理与用户内存管理之间的关系,希望大家最终能驾驭Linux内存管理。
前言
内存管理一向是所有操作系统书籍不惜笔墨重点讨论的内容,无论市面上或是网上都充斥着大量涉及内存管理的教材和资料。因此,我们这里所要写的Linux内存管理采取避重就轻的策略,从理论层面就不去班门弄斧,贻笑大方了。我们最想做的和可能做到的是从开发者的角度谈谈对内存管理的理解,最终目的是把我们在内核开发中使用内存的经验和对Linux内存管理的认识与大家共享。
当然,这其中我们也会涉及到一些诸如段页等内存管理的基本理论,但我们的目的不是为了强调理论,而是为了指导理解开发中的实践,所以仅仅点到为止,不做深究。
遵循“理论来源于实践”的“教条”,我们先不必一下子就钻入内核里去看系统内存到底是如何管理,那样往往会让你陷入似懂非懂的窘境(我当年就犯了这个错误!)。所以最好的方式是先从外部(用户编程范畴)来观察进程如何使用内存,等到大家对内存的使用有了较直观的认识后,再深入到内核中去学习内存如何被管理等理论知识。最后再通过一个实例编程将所讲内容融会贯通。
进程与内存
进程如何使用内存?
毫无疑问,所有进程(执行的程序)都必须占用一定数量的内存,它或是用来存放从磁盘载入的程序代码,或是存放取自用户输入的数据等等。不过进程对这些内存的管理方式因内存用途不一而不尽相同,有些内存是事先静态分配和统一回收的,而有些却是按需要动态分配和回收的。
对任何一个普通进程来讲,它都会涉及到5种不同的数据段。稍有编程知识的朋友都能想到这几个数据段中包含有“程序代码段”、“程序数据段”、“程序堆栈段”等。不错,这几种数据段都在其中,但除了以上几种数据段之外,进程还另外包含两种数据段。下面我们来简单归纳一下进程对应的内存空间中所包含的5种不同的数据区。
*代码段*:代码段是用来存放可执行文件的操作指令,也就是说是它是可执行程序在内存中的镜像。代码段需要防止在运行时被非法修改,所以只准许读取操作,而不允许写入(修改)操作——它是不可写的。
*数据段*:数据段用来存放可执行文件中已初始化全局变量,换句话说就是存放程序静态分配[1]的变量和全局变量。
BSS*段<a href="https://link.segmentfault.com/?enc=DcwhqnvkYMxrvWKNSDlpjw%3D%3D.%2BTVdR37FrzpDlx30Od%2F227j%2FFcDXfhqFymFBWKvF4UA%3D%3D">*[2]**:BSS段包含了程序中未初始化的全局变量,在内存中 bss段全部置零。
堆(heap*)*:堆是用于存放进程运行中被动态分配的内存段,它的大小并不固定,可动态扩张或缩减。当进程调用malloc等函数分配内存时,新分配的内存就被动态添加到堆上(堆被扩张);当利用free等函数释放内存时,被释放的内存从堆中被剔除(堆被缩减)
*栈*:栈是用户存放程序临时创建的局部变量,也就是说我们函数括弧“{}”中定义的变量(但不包括static声明的变量,static意味着在数据段中存放变量)。除此以外,在函数被调用时,其参数也会被压入发起调用的进程栈中,并且待到调用结束后,函数的返回值也会被存放回栈中。由于栈的先进先出特点,所以栈特别方便用来保存/恢复调用现场。从这个意义上讲,我们可以把堆栈看成一个寄存、交换临时数据的内存区。
进程如何组织这些区域?
上述几种内存区域中数据段、BSS和堆通常是被连续存储的——内存位置上是连续的,而代码段和栈往往会被独立存放。有趣的是,堆和栈两个区域关系很“暧昧”,他们一个向下“长”(i386体系结构中栈向下、堆向上),一个向上“长”,相对而生。但你不必担心他们会碰头,因为他们之间间隔很大(到底大到多少,你可以从下面的例子程序计算一下),绝少有机会能碰到一起。

⑹ LINUX对硬件支持有上限么最大多少内存多大硬盘容量

有上限,32
位内核是
4G
,32
位开
PAE
支持到
64G
,不过传说
PAE

4G
内存以下会有性能损失。64
位现在其实只有
48
位,也就是
256T
,所以
Linux
同样也只能支持到这么大。
硬盘容量看分区大小,ext3
我记得是
16T
,ext4
需要用新版的
e2fsprog
,最高支持
1E
,不然好像还是
16T
。其余的文件系统看各自的支持情况了。不过这么大的硬盘,可能就不单单是用
ext
文件系统了。而是一些集群试的文件系统。

⑺ Linux可以识别多少GB的内存

32位的Linux的内存最大支持到4GB,64位的Linux的最大支持内存在EB级别上。实际上最大支持多大的内容跟操作系统的种类无关,而是跟操作系统是32位还是64位有关。

32位的Linux和32位的Windows支持的最大内存是4GB,2的32次方字节=4294967296字节
64位的Linux和Windows支持的最大内存=16EB,2的64次方字节=18446744073709551616字节

⑻ 64位linux和32位linux的区别是什么

64位linux和32位linux使用是一样的,但是唯一不一样的就是64位linux的速度更快点。如果是你个人使用的话我可以这样说你感觉不出来。而且64位的linux更占内存(如果你内存足够大的话就另当别论),我想现在的个人的电脑估计也就是2G左右吧。
至于说的32位的资源多,我感觉这句话应该用在windows下吧。因为linux是开源的,所以它里面的软件也大部分是开源的。所以也就没有32位资源更多之说。
我个人建议使用32位的,建议使用centos linux。
谢谢。

⑼ linux系统多少位

查看linux机器是32位还是64位的方法:

⑽ 为什么有些linux发行版32位比64位镜像还要大

32位操作系统的寻址空间最大是4GB,但是实际上达不到4G,因为系统要保留一部分内存内部使用。但即使是这样,也是在PAE的时候,PAE可以说是一个中间层,等于再转换一次地址,这样对32位系统就可以支持更大的内存,但缺点是效率降低了。 如果是64位系统,支持的内存就多了,而且更适合服务器操作系统。 一般的电脑还真的看不出来,但只要对服务器(硬件)有了解,就知道,现在的高端服务器动辄就能支持32G的内存,而8G似乎也成了标配。所以对服务器,都选择了64位的版本。更重要的,现在的64位CPU怎样才能将性能发挥到极致,也就得64位操作系统了。 对1G内存、2.2G单核的低端服务器,我建议还是采用32位的操作系统,因为32位操作系统经过这些年的发展明显比64位的要成熟,支持方面有保证。详细了解linux,多看看《linux就该这么学》这本书。

阅读全文

与linuxpae64相关的资料

热点内容
php编程语言在哪里 浏览:302
矢量文件有哪些格式 浏览:790
文书档案长期保存的文件有哪些 浏览:945
如何把pdf文字复制粘贴到word文档 浏览:507
勤哲价格qinzheapp 浏览:709
腾讯小说下载的文件在哪里 浏览:106
js显示隐藏控件 浏览:119
共享上的文件内容误删如何找回 浏览:600
双十一网络营销分析 浏览:634
win10的areo怎么关 浏览:40
阿城区如何办理电信网络 浏览:622
中国移动流量代码 浏览:364
厂里编程叫什么 浏览:96
win10我的世界主题包 浏览:34
哪个城市需要编程的企业多 浏览:758
linuxfprintf 浏览:58
如何把自己的手机在转转app上卖掉 浏览:641
医疗系统编程学什么专业 浏览:634
北京网络seo优化什么价格 浏览:776
win7文件夹声音 浏览:178

友情链接