导航:首页 > 编程语言 > rsa加密算法java视频教程

rsa加密算法java视频教程

发布时间:2024-12-29 19:47:46

Ⅰ 高分求java的RSA 和IDEA 加密解密算法

RSA算法非常简单,概述如下:
找两素数p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一个数e,要求满足e<t并且e与t互素(就是最大公因数为1)
取d*e%t==1

这样最终得到三个数: n d e

设消息为数M (M <n)
设c=(M**d)%n就得到了加密后的消息c
设m=(c**e)%n则 m == M,从而完成对c的解密。
注:**表示次方,上面两式中的d和e可以互换。

在对称加密中:
n d两个数构成公钥,可以告诉别人;
n e两个数构成私钥,e自己保留,不让任何人知道。
给别人发送的信息使用e加密,只要别人能用d解开就证明信息是由你发送的,构成了签名机制。
别人给你发送信息时使用d加密,这样只有拥有e的你能够对其解密。

rsa的安全性在于对于一个大数n,没有有效的方法能够将其分解
从而在已知n d的情况下无法获得e;同样在已知n e的情况下无法
求得d。

<二>实践

接下来我们来一个实践,看看实际的操作:
找两个素数:
p=47
q=59
这样
n=p*q=2773
t=(p-1)*(q-1)=2668
取e=63,满足e<t并且e和t互素
用perl简单穷举可以获得满主 e*d%t ==1的数d:
C:\Temp>perl -e "foreach $i (1..9999){ print($i),last if $i*63%2668==1 }"
847
即d=847

最终我们获得关键的
n=2773
d=847
e=63

取消息M=244我们看看

加密:

c=M**d%n = 244**847%2773
用perl的大数计算来算一下:
C:\Temp>perl -Mbigint -e "print 244**847%2773"
465
即用d对M加密后获得加密信息c=465

解密:

我们可以用e来对加密后的c进行解密,还原M:
m=c**e%n=465**63%2773 :
C:\Temp>perl -Mbigint -e "print 465**63%2773"
244
即用e对c解密后获得m=244 , 该值和原始信息M相等。

<三>字符串加密

把上面的过程集成一下我们就能实现一个对字符串加密解密的示例了。
每次取字符串中的一个字符的ascii值作为M进行计算,其输出为加密后16进制
的数的字符串形式,按3字节表示,如01F

代码如下:

#!/usr/bin/perl -w
#RSA 计算过程学习程序编写的测试程序
#watercloud 2003-8-12
#
use strict;
use Math::BigInt;

my %RSA_CORE = (n=>2773,e=>63,d=>847); #p=47,q=59

my $N=new Math::BigInt($RSA_CORE{n});
my $E=new Math::BigInt($RSA_CORE{e});
my $D=new Math::BigInt($RSA_CORE{d});

print "N=$N D=$D E=$E\n";

sub RSA_ENCRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$cmess);

for($i=0;$i < length($$r_mess);$i++)
{
$c=ord(substr($$r_mess,$i,1));
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($D,$N);
$c=sprintf "%03X",$C;
$cmess.=$c;
}
return \$cmess;
}

sub RSA_DECRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$dmess);

for($i=0;$i < length($$r_mess);$i+=3)
{
$c=substr($$r_mess,$i,3);
$c=hex($c);
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($E,$N);
$c=chr($C);
$dmess.=$c;
}
return \$dmess;
}

my $mess="RSA 娃哈哈哈~~~";
$mess=$ARGV[0] if @ARGV >= 1;
print "原始串:",$mess,"\n";

my $r_cmess = RSA_ENCRYPT(\$mess);
print "加密串:",$$r_cmess,"\n";

my $r_dmess = RSA_DECRYPT($r_cmess);
print "解密串:",$$r_dmess,"\n";

#EOF

测试一下:
C:\Temp>perl rsa-test.pl
N=2773 D=847 E=63
原始串:RSA 娃哈哈哈~~~
加密串:
解密串:RSA 娃哈哈哈~~~

C:\Temp>perl rsa-test.pl 安全焦点(xfocus)
N=2773 D=847 E=63
原始串:安全焦点(xfocus)
加密串:
解密串:安全焦点(xfocus)

<四>提高

前面已经提到,rsa的安全来源于n足够大,我们测试中使用的n是非常小的,根本不能保障安全性,
我们可以通过RSAKit、RSATool之类的工具获得足够大的N 及D E。
通过工具,我们获得1024位的N及D E来测试一下:

n=EC3A85F5005D
4C2013433B383B
A50E114705D7E2
BC511951

d=0x10001

e=DD28C523C2995
47B77324E66AFF2
789BD782A592D2B
1965

设原始信息
M=

完成这么大数字的计算依赖于大数运算库,用perl来运算非常简单:

A) 用d对M进行加密如下:
c=M**d%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x11111111111122222222222233
333333333, 0x10001,
D55EDBC4F0
6E37108DD6
);print $x->as_hex"
b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898

即用d对M加密后信息为:
c=b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898

B) 用e对c进行解密如下:

m=c**e%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x17b287be418c69ecd7c39227ab
5aa1d99ef3
0cb4764414
, 0xE760A
3C29954C5D
7324E66AFF
2789BD782A
592D2B1965, CD15F90
4F017F9CCF
DD60438941
);print $x->as_hex"

(我的P4 1.6G的机器上计算了约5秒钟)

得到用e解密后的m= == M

C) RSA通常的实现
RSA简洁幽雅,但计算速度比较慢,通常加密中并不是直接使用RSA 来对所有的信息进行加密,
最常见的情况是随机产生一个对称加密的密钥,然后使用对称加密算法对信息加密,之后用
RSA对刚才的加密密钥进行加密。

最后需要说明的是,当前小于1024位的N已经被证明是不安全的
自己使用中不要使用小于1024位的RSA,最好使用2048位的。

----------------------------------------------------------

一个简单的RSA算法实现JAVA源代码:

filename:RSA.java

/*
* Created on Mar 3, 2005
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/

import java.math.BigInteger;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.FileWriter;
import java.io.FileReader;
import java.io.BufferedReader;
import java.util.StringTokenizer;

/**
* @author Steve
*
* TODO To change the template for this generated type comment go to
* Window - Preferences - Java - Code Style - Code Templates
*/
public class RSA {

/**
* BigInteger.ZERO
*/
private static final BigInteger ZERO = BigInteger.ZERO;

/**
* BigInteger.ONE
*/
private static final BigInteger ONE = BigInteger.ONE;

/**
* Pseudo BigInteger.TWO
*/
private static final BigInteger TWO = new BigInteger("2");

private BigInteger myKey;

private BigInteger myMod;

private int blockSize;

public RSA (BigInteger key, BigInteger n, int b) {
myKey = key;
myMod = n;
blockSize = b;
}

public void encodeFile (String filename) {
byte[] bytes = new byte[blockSize / 8 + 1];
byte[] temp;
int tempLen;
InputStream is = null;
FileWriter writer = null;
try {
is = new FileInputStream(filename);
writer = new FileWriter(filename + ".enc");
}
catch (FileNotFoundException e1){
System.out.println("File not found: " + filename);
}
catch (IOException e1){
System.out.println("File not found: " + filename + ".enc");
}

/**
* Write encoded message to 'filename'.enc
*/
try {
while ((tempLen = is.read(bytes, 1, blockSize / 8)) > 0) {
for (int i = tempLen + 1; i < bytes.length; ++i) {
bytes[i] = 0;
}
writer.write(encodeDecode(new BigInteger(bytes)) + " ");
}
}
catch (IOException e1) {
System.out.println("error writing to file");
}

/**
* Close input stream and file writer
*/
try {
is.close();
writer.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}

public void decodeFile (String filename) {

FileReader reader = null;
OutputStream os = null;
try {
reader = new FileReader(filename);
os = new FileOutputStream(filename.replaceAll(".enc", ".dec"));
}
catch (FileNotFoundException e1) {
if (reader == null)
System.out.println("File not found: " + filename);
else
System.out.println("File not found: " + filename.replaceAll(".enc", "dec"));
}

BufferedReader br = new BufferedReader(reader);
int offset;
byte[] temp, toFile;
StringTokenizer st = null;
try {
while (br.ready()) {
st = new StringTokenizer(br.readLine());
while (st.hasMoreTokens()){
toFile = encodeDecode(new BigInteger(st.nextToken())).toByteArray();
System.out.println(toFile.length + " x " + (blockSize / 8));

if (toFile[0] == 0 && toFile.length != (blockSize / 8)) {
temp = new byte[blockSize / 8];
offset = temp.length - toFile.length;
for (int i = toFile.length - 1; (i <= 0) && ((i + offset) <= 0); --i) {
temp[i + offset] = toFile[i];
}
toFile = temp;
}

/*if (toFile.length != ((blockSize / 8) + 1)){
temp = new byte[(blockSize / 8) + 1];
System.out.println(toFile.length + " x " + temp.length);
for (int i = 1; i < temp.length; i++) {
temp[i] = toFile[i - 1];
}
toFile = temp;
}
else
System.out.println(toFile.length + " " + ((blockSize / 8) + 1));*/
os.write(toFile);
}
}
}
catch (IOException e1) {
System.out.println("Something went wrong");
}

/**
* close data streams
*/
try {
os.close();
reader.close();
}
catch (IOException e1) {
System.out.println("Error closing file.");
}
}

/**
* Performs <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*
* @param base the base to be raised
* @param pow the power to which the base will be raisded
* @param mod the molar domain over which to perform this operation
* @return <tt>base</tt>^<sup><tt>pow</tt></sup> within the molar
* domain of <tt>mod</tt>.
*/
public BigInteger encodeDecode(BigInteger base) {
BigInteger a = ONE;
BigInteger s = base;
BigInteger n = myKey;

while (!n.equals(ZERO)) {
if(!n.mod(TWO).equals(ZERO))
a = a.multiply(s).mod(myMod);

s = s.pow(2).mod(myMod);
n = n.divide(TWO);
}

return a;
}

}

在这里提供两个版本的RSA算法JAVA实现的代码下载:

1. 来自于 http://www.javafr.com/code.aspx?ID=27020 的RSA算法实现源代码包:
http://zeal.newmenbase.net/attachment/JavaFR_RSA_Source.rar

2. 来自于 http://www.ferrara.linux.it/Members/lucabariani/RSA/implementazioneRsa/ 的实现:
http://zeal.newmenbase.net/attachment/sorgentiJava.tar.gz - 源代码包
http://zeal.newmenbase.net/attachment/algoritmoRSA.jar - 编译好的jar包

另外关于RSA算法的php实现请参见文章:
php下的RSA算法实现

关于使用VB实现RSA算法的源代码下载(此程序采用了psc1算法来实现快速的RSA加密):
http://zeal.newmenbase.net/attachment/vb_PSC1_RSA.rar

RSA加密的JavaScript实现: http://www.ohdave.com/rsa/

Ⅱ RSA PKCS#1在java中怎么实现

楼主看看下面的代码是不是你所需要的,这是我原来用的时候收集的
import javax.crypto.Cipher;
import java.security.*;
import java.security.spec.RSAPublicKeySpec;
import java.security.spec.RSAPrivateKeySpec;
import java.security.spec.InvalidKeySpecException;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;
import java.io.*;
import java.math.BigInteger;

/**
* RSA 工具类。提供加密,解密,生成密钥对等方法。
* 需要到http://www.bouncycastle.org下载bcprov-jdk14-123.jar。
* RSA加密原理概述
* RSA的安全性依赖于大数的分解,公钥和私钥都是两个大素数(大于100的十进制位)的函数。
* 据猜测,从一个密钥和密文推断出明文的难度等同于分解两个大素数的积
* ===================================================================
* (该算法的安全性未得到理论的证明)
* ===================================================================
* 密钥的产生:
* 1.选择两个大素数 p,q ,计算 n=p*q;
* 2.随机选择加密密钥 e ,要求 e 和 (p-1)*(q-1)互质
* 3.利用 Euclid 算法计算解密密钥 d , 使其满足 e*d = 1(mod(p-1)*(q-1)) (其中 n,d 也要互质)
* 4:至此得出公钥为 (n,e) 私钥为 (n,d)
* ===================================================================
* 加解密方法:
* 1.首先将要加密的信息 m(二进制表示) 分成等长的数据块 m1,m2,...,mi 块长 s(尽可能大) ,其中 2^s<n
* 2:对应的密文是: ci = mi^e(mod n)
* 3:解密时作如下计算: mi = ci^d(mod n)
* ===================================================================
* RSA速度
* 由于进行的都是大数计算,使得RSA最快的情况也比DES慢上100倍,无论是软件还是硬件实现。
* 速度一直是RSA的缺陷。一般来说只用于少量数据加密。
* 文件名:RSAUtil.java<br>
* @author 赵峰<br>
* 版本:1.0.1<br>
* 描述:本算法摘自网络,是对RSA算法的实现<br>
* 创建时间:2009-7-10 下午09:58:16<br>
* 文件描述:首先生成两个大素数,然后根据Euclid算法生成解密密钥<br>
*/
public class RSAUtil {

//密钥对
private KeyPair keyPair = null;

/**
* 初始化密钥对
*/
public RSAUtil(){
try {
this.keyPair = this.generateKeyPair();
} catch (Exception e) {
e.printStackTrace();
}
}

/**
* 生成密钥对
* @return KeyPair
* @throws Exception
*/
private KeyPair generateKeyPair() throws Exception {
try {
KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance("RSA",new org.bouncycastle.jce.provider.BouncyCastleProvider());
//这个值关系到块加密的大小,可以更改,但是不要太大,否则效率会低
final int KEY_SIZE = 1024;
keyPairGen.initialize(KEY_SIZE, new SecureRandom());
KeyPair keyPair = keyPairGen.genKeyPair();
return keyPair;
} catch (Exception e) {
throw new Exception(e.getMessage());
}

}

/**
* 生成公钥
* @param molus
* @param publicExponent
* @return RSAPublicKey
* @throws Exception
*/
private RSAPublicKey generateRSAPublicKey(byte[] molus, byte[] publicExponent) throws Exception {

KeyFactory keyFac = null;
try {
keyFac = KeyFactory.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
} catch (NoSuchAlgorithmException ex) {
throw new Exception(ex.getMessage());
}
RSAPublicKeySpec pubKeySpec = new RSAPublicKeySpec(new BigInteger(molus), new BigInteger(publicExponent));
try {
return (RSAPublicKey) keyFac.generatePublic(pubKeySpec);
} catch (InvalidKeySpecException ex) {
throw new Exception(ex.getMessage());
}

}

/**
* 生成私钥
* @param molus
* @param privateExponent
* @return RSAPrivateKey
* @throws Exception
*/
private RSAPrivateKey generateRSAPrivateKey(byte[] molus, byte[] privateExponent) throws Exception {
KeyFactory keyFac = null;
try {
keyFac = KeyFactory.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
} catch (NoSuchAlgorithmException ex) {
throw new Exception(ex.getMessage());
}
RSAPrivateKeySpec priKeySpec = new RSAPrivateKeySpec(new BigInteger(molus), new BigInteger(privateExponent));
try {
return (RSAPrivateKey) keyFac.generatePrivate(priKeySpec);
} catch (InvalidKeySpecException ex) {
throw new Exception(ex.getMessage());
}
}

/**
* 加密
* @param key 加密的密钥
* @param data 待加密的明文数据
* @return 加密后的数据
* @throws Exception
*/
public byte[] encrypt(Key key, byte[] data) throws Exception {
try {
Cipher cipher = Cipher.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
cipher.init(Cipher.ENCRYPT_MODE, key);
// 获得加密块大小,如:加密前数据为128个byte,而key_size=1024 加密块大小为127 byte,加密后为128个byte;
// 因此共有2个加密块,第一个127 byte第二个为1个byte
int blockSize = cipher.getBlockSize();
// System.out.println("blockSize:"+blockSize);
int outputSize = cipher.getOutputSize(data.length);// 获得加密块加密后块大小
// System.out.println("加密块大小:"+outputSize);
int leavedSize = data.length % blockSize;
// System.out.println("leavedSize:"+leavedSize);
int blocksSize = leavedSize != 0 ? data.length / blockSize + 1 : data.length / blockSize;
byte[] raw = new byte[outputSize * blocksSize];
int i = 0;
while (data.length - i * blockSize > 0) {
if (data.length - i * blockSize > blockSize)
cipher.doFinal(data, i * blockSize, blockSize, raw, i * outputSize);
else
cipher.doFinal(data, i * blockSize, data.length - i * blockSize, raw, i * outputSize);
// 这里面doUpdate方法不可用,查看源代码后发现每次doUpdate后并没有什么实际动作除了把byte[]放到ByteArrayOutputStream中
// 而最后doFinal的时候才将所有的byte[]进行加密,可是到了此时加密块大小很可能已经超出了OutputSize所以只好用dofinal方法。
i++;
}
return raw;
} catch (Exception e) {
throw new Exception(e.getMessage());
}
}

/**
* 解密
* @param key 解密的密钥
* @param raw 已经加密的数据
* @return 解密后的明文
* @throws Exception
*/
@SuppressWarnings("static-access")
public byte[] decrypt(Key key, byte[] raw) throws Exception {
try {
Cipher cipher = Cipher.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
cipher.init(cipher.DECRYPT_MODE, key);
int blockSize = cipher.getBlockSize();
ByteArrayOutputStream bout = new ByteArrayOutputStream(64);
int j = 0;
while (raw.length - j * blockSize > 0) {
bout.write(cipher.doFinal(raw, j * blockSize, blockSize));
j++;
}
return bout.toByteArray();
} catch (Exception e) {
throw new Exception(e.getMessage());
}
}

/**
* 返回公钥
* @return
* @throws Exception
*/
public RSAPublicKey getRSAPublicKey() throws Exception{
//获取公钥
RSAPublicKey pubKey = (RSAPublicKey) keyPair.getPublic();
//获取公钥系数(字节数组形式)
byte[] pubModBytes = pubKey.getMolus().toByteArray();
//返回公钥公用指数(字节数组形式)
byte[] pubPubExpBytes = pubKey.getPublicExponent().toByteArray();
//生成公钥
RSAPublicKey recoveryPubKey = this.generateRSAPublicKey(pubModBytes,pubPubExpBytes);
return recoveryPubKey;
}

/**
* 获取私钥
* @return
* @throws Exception
*/
public RSAPrivateKey getRSAPrivateKey() throws Exception{
// 获取私钥
RSAPrivateKey priKey = (RSAPrivateKey) keyPair.getPrivate();
// 返回私钥系数(字节数组形式)
byte[] priModBytes = priKey.getMolus().toByteArray();
// 返回私钥专用指数(字节数组形式)
byte[] priPriExpBytes = priKey.getPrivateExponent().toByteArray();
// 生成私钥
RSAPrivateKey recoveryPriKey = this.generateRSAPrivateKey(priModBytes,priPriExpBytes);
return recoveryPriKey;
}

/**
* 测试
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
RSAUtil rsa = new RSAUtil();
String str = "天龙八部、神雕侠侣、射雕英雄传白马啸西风";
RSAPublicKey pubKey = rsa.getRSAPublicKey();
RSAPrivateKey priKey = rsa.getRSAPrivateKey();
// System.out.println("加密后==" + new String(rsa.encrypt(pubKey,str.getBytes())));
String mw = new String(rsa.encrypt(pubKey, str.getBytes()));
System.out.println("加密后:"+mw);
// System.out.println("解密后:");
System.out.println("解密后==" + new String(rsa.decrypt(priKey,rsa.encrypt(pubKey,str.getBytes()))));
}
}

Ⅲ 一个RSA算法的加密运算,需要完整的演算过程。

那我给你解释下RSA吧,尽量让你看懂:
*RSA是非对称加密体系,也就是说加密用一个公钥,解密用一个私钥,这2个密钥不同,这点非常非常重要。

其实RSA非常简洁,但很美

流程
1,寻找2个大的素数p,q n=p*q=33 N=(p-1)*(q-1)=20
公钥e一般是3 私钥d要通过公钥e去算出来
e*d=1(mod N) 就是说e和d的乘积模N得1 也就是e和d关于模N互为逆元
3*7=1(mod 20) 可知d=7

加密的明文设为M 加密后的密文设为c
加密过程:C=M^e(mod n)
解密过程:M=C^d(mod n)

举个具体的例子 假如M=2
加密过程:C=2^3(mod 33)=8(mod 33)
解密过程:M=8^7(mod 33)=2097152(mod 33)=2(mod 33) 可以看出和和本来的明文是相同的。

原理可以理解为 M=M^(ed) (mod n)
本例中 e*d=21 也就是是M^21次方等于M
RSA这个特性是数论中的费马定理推出的

在讲讲细节 比如楼主加密的是26的字母 就当明文的值是从1到26
就拿n=33说吧 加密后的密文的值是1到33 这很正常
但是解密后 一定和明文的值相同 也就是1到26

实际情况中 公钥e是公开的 私钥d是保密的
比如甲要给乙发个东西 乙的公钥由于是公开的 所以甲知道 但甲不知道乙的私钥
甲先用乙的公钥加密 之后 这个密文只能用乙的私钥 由于乙的私钥是保密的 只有他自己知道 所以保证了安全

RSA最大的安全问题是 n的分解 只要把n分解为p*q 则N=(p-1)(q-1)
根据 e*d=1(mod N) 就可以通过e算出d 那么私钥都被人算出来了 也就没安全性而言了
不过可惜的是 大数分解是一个单向的函数 你算知道p,q算n很容易,但是知道n算出p,q相当难

强调一句 n是加密解密用的 N是知道e算d的

楼主也没说你要干嘛 想看懂就这么多
如果要实现这个算法:
必须知道2点:
1.p,q这个两个大素数的生成,这牵扯到素性检验,数论中是一章的内容,没法和你展开
2.取模运算,由于加密解密过程可能取一个数的几十次方的模数,所以这个必须用简便的算法来化解复杂度,也就是模重复平方算法。

如果要编程中使用,太容易了
去下个dll
在java中 直接有可用于RSA的类 相当容易

如果楼主想研究的更深 可以把邮箱 发我 RSA我以前做过一个ppt

Ⅳ 求JAVA编写的RSA加密算法

代码如下:main方法用于测试的,不是算法本身。

import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;

import javax.crypto.Cipher;

public class RSACrypto
{
private final static String RSA = "RSA";
public static PublicKey uk;
public static PrivateKey rk;

public static void generateKey() throws Exception
{
KeyPairGenerator gen = KeyPairGenerator.getInstance(RSA);
gen.initialize(512, new SecureRandom());
KeyPair keyPair = gen.generateKeyPair();
uk = keyPair.getPublic();
rk = keyPair.getPrivate();
}

private static byte[] encrypt(String text, PublicKey pubRSA) throws Exception
{
Cipher cipher = Cipher.getInstance(RSA);
cipher.init(Cipher.ENCRYPT_MODE, pubRSA);
return cipher.doFinal(text.getBytes());
}

public final static String encrypt(String text)
{
try {
return byte2hex(encrypt(text, uk));
}
catch(Exception e)
{
e.printStackTrace();
}
return null;
}

public final static String decrypt(String data)
{
try{
return new String(decrypt(hex2byte(data.getBytes())));
}
catch (Exception e)
{
e.printStackTrace();
}
return null;
}

private static byte[] decrypt(byte[] src) throws Exception
{
Cipher cipher = Cipher.getInstance(RSA);
cipher.init(Cipher.DECRYPT_MODE, rk);
return cipher.doFinal(src);
}

public static String byte2hex(byte[] b)
{
String hs = "";
String stmp = "";
for (int n = 0; n < b.length; n ++)
{
stmp = Integer.toHexString(b[n] & 0xFF);
if (stmp.length() == 1)
hs += ("0" + stmp);
else
hs += stmp;
}
return hs.toUpperCase();
}

public static byte[] hex2byte(byte[] b)
{
if ((b.length % 2) != 0)
throw new IllegalArgumentException("长度不是偶数");

byte[] b2 = new byte[b.length / 2];

for (int n = 0; n < b.length; n += 2)
{
String item = new String(b, n, 2);
b2[n/2] = (byte)Integer.parseInt(item, 16);
}
return b2;
}

//just for test
public static void main(String args[])
{
try
{
RSACrypto.generateKey();
String cipherText = RSACrypto.encrypt("asdfghjh");
System.out.println(cipherText);
String plainText = RSACrypto.decrypt(cipherText);
System.out.println(plainText);
}
catch(Exception e)
{
e.printStackTrace();
}
}

}

Ⅳ java ibm jdk rsa 怎么 加密

android和java webservice RSA处理的不同

1.andorid机器上生成的(密钥对由服务器在windows xp下生成并将公钥发给客户端保存)密码无法在服务器通过私钥解密。

2.为了测试,在服务器本地加解密正常,另外,在android上加解密也正常,但是在服务器中加密(使用相同公钥)后的密码同样无法在android系统解密(使用相同私钥)。
3.由于对RSA加密算法不了解,而且对Java RSA的加密过程也不清楚、谷歌一番,才了解到可能是加密过程中的填充字符长度不同,这跟加解密时指定的RSA算法有关系。
4. 比如,在A机中使用标准RSA通过公钥加密,然后在B系统中使用“RSA/ECB/NoPadding”使用私钥解密,结果可以解密,但是会发现解密后的原文前面带有很多特殊字符,这就是在加密前填充的空字符;如果在B系统中仍然使用标准的RSA算法解密,这在相同类型的JDK虚拟机环境下当然是完全一样的,关键是android系统使用的虚拟机(dalvik)跟SUN标准JDK是有所区别的,其中他们默认的RSA实现就不同。
5.更形象一点,在加密的时候加密的原文“abc”,直接使用“abc”.getBytes()方法获得的bytes长度可能只有3,但是系统却先把它放到一个512位的byte数组里,new byte[512],再进行加密。但是解密的时候使用的是“加密后的密码”.getBytes()来解密,解密后的原文自然就是512长度的数据,即是在“abc”之外另外填充了500多字节的其他空字符。

阅读全文

与rsa加密算法java视频教程相关的资料

热点内容
联合时代网络怎么样 浏览:110
制作chm文件 浏览:571
exceljs控件 浏览:448
一般安装程序的文件名有哪些 浏览:830
efs文件系统 浏览:574
数据库中创建用户运行的权限 浏览:26
vba扫描每一列怎么编程 浏览:800
ipadmini升级iso8卡 浏览:778
数据库开发视频教程 浏览:307
坦克300u盘读取不了文件夹 浏览:695
xp系统找回桌面文件 浏览:76
平板保存文件到u盘 浏览:439
压缩文件分析 浏览:769
用aopr解密压缩文件 浏览:511
lumia525win10降级 浏览:755
javasetw 浏览:452
流量监控安卓版 浏览:631
三星笔记本网络连接651 浏览:818
荣耀a2安装app卡在哪里 浏览:987
迪士尼英语app中文版 浏览:165

友情链接