导航:首页 > 编程语言 > lims在数控程序里是什么意思

lims在数控程序里是什么意思

发布时间:2024-12-12 00:35:04

1. 我想要一个关于《数控毕业的论文》

第一部分:数控机床应用调查
一、 品正数控深孔钻床外型及简介
品正数控深孔钻床外型如图1-1

图1-1
品正数控深孔钻床简介:
深孔钻 : 自1982年生产以来, 一直占据生产的重要位置。 现市场对模具生产交期需求迫切, 深孔加工机快捷,便利, 不需要铰孔, 一步到位, 成了不可或缺的工具。更兼投资回收成本快速, 是抢占市场的利器。
二、深孔钻在设计上的优点
合运水道,热流道,顶针孔,油泵深孔,轧辊孔等深孔加工。 敝司深孔钻在设计上有以下的优点 :
1. 工作台, 底座机身, 立柱, 升降台, 全部 FC30铸铁成型, 加工时达至最佳的吸震效果。
2. 床身工作台底座一体成型, 结构一致, 筋骨强壮, 没有立柱与工作台分开的设计。
3. 滑轨, 工作台导轨, 采用V型导轨, 保证准确的导向性, 无方轨之侧间隙。滑动时无蛇行现象, 亦能维持滑动之顺畅。在强压下承载座与滑动座更紧密结合。两者接触而能平均受力。长时间运动能维持稳定之动静态精度, 而能达到增长机件寿命及提高加工品质。
4. 滑轨经热处理研磨, 更能保证耐用与刚性。
5. 采用良好的油压泵设计, 控制流量与压力, 确保使用寿命。
6. 另外更采用CNC 换刀系统装置, 只用轻轻按下控制键, 气动锁刀系统。 更换刀具方便。
7. 纸带与磁铁过滤装置, 能将钢材加工中铁屑与切削油废弃的微量元素过滤, 循环再用。
三、品正深孔钻规格表
深孔钻规格表
型号 MGD-813 MGD-1015 MGD-1520 MGD-1525
Table (单位 mm)
工作台尺寸 400x1500 600x2000 800x2300 800x2800
作业面积 1300x600x800(z1)x400(z2) 1500x600x1000 2000x1000x1500 2500x1000x1500
T型槽 18mmx63mmx5 22x34x5 22x34x7 22x34x7
主轴
主轴进给行程 800 1000 1250 1500
主轴进给速度 (mm/min) 20-5000mm
主轴直径 Φ120
主轴端至台面距离 70 mm
电动机
主轴(kw) 7.5kw
磁力分离器(W) 25W
纸带过滤器 25W
铁削排除机 (W) 0.375
油压泵 10HPx6P
润滑油泵 150Wx2
加工能力
加工深度 800 1000 1250 1500
钻孔能力 Φ3-25mm(32)
油压系统
切削油桶 (L) 1800LT
高压泵压力 (kg/cm2 ) 0-120
高压泵吐出量 (L/min) 5-70
最大载重 (kg) 1000 3000 5000 7000
机械净重 (kg) App.9000 App.10500 App.14500 App.16500
占地面积 App.3125x2046 App.5000x5000 App.5500x5500 App.6000x6000
第二部分:数控加工工艺分析
要求:能够根据图纸的几何特征和技术要求,运用数控加工工艺知识,选择加工方法、装夹定位方式、合理地选择加工所用的刀具及几何参数,划分加工工序和工步,安排加工路线,确定切削参数。在此基础上,能够完成中等复杂零件数控加工工艺文件的编制(至少两个零件的工艺分析)。一、加工平面凸轮零件上的槽与孔,外部轮廓已加工完,零件材料为HT200。 图2.1
1、零件图工艺分析
凸轮槽形内、外轮廓由直线和圆弧组成,几何元素之间关系描述清楚完整,凸轮槽侧面与 、 两个内孔表面粗糙度要求较高,为Ra1.6。凸轮槽内外轮廓面和 孔与底面有垂直度要求。零件材料为HT200,切削加工性能较好。
根据上述分析,凸轮槽内、外轮廓及 、 两个孔的加工应分粗、精加工两个阶段进行,以保证表面粗糙度要求。同时以底面A定位,提高装夹刚度以满足垂直度要求。
2、确定装夹方案
根据零件的结构特点,加工 、 两个孔时,以底面A定位(必要时可设工艺孔),采用螺旋压板机构夹紧。加工凸轮槽内外轮廓时,采用“一面两孔”方式定位,既以底面A和 、 两个孔为定位基准。
3、确定加工顺序及走刀路线
加工顺序的拟定按照基面先行、先粗后精的原则确定。因此应先加工用做定位基准的 、 两个孔,然后再加工凸轮槽内外轮廓表面。为保证加工精度,粗、精加工分开,其中 、 两个孔的加工采用钻孔—粗铰—精铰方案。走刀路线包括平面进给和深度进给两部分。平面进给时,外凸轮廓从切线方向切入,内凹轮廓从过渡圆弧切入。为使凸轮槽表面具有较好的表面质量,采用顺铣方式铣削。深度进给有两种方法:一种是在XOY平面(或YOX平面)来回铣削逐渐进刀到既定深度;另一种方法是先打一个工艺孔,然后从工艺孔进刀到既定深度。
4、刀具选择
根据零件特点选用8把刀具,如下表:
序号 刀具号 刀具 加工表面 备注
规格名称 数量 刀长/mm
1 T01 ¢5中心钻 1 钻¢5mm中心孔
2 T02 ¢19.6钻头 1 45 ¢20孔粗加工
3 T03 ¢11.6钻头 1 30 ¢12孔粗加工
4 T04 ¢20铰刀 1 45 ¢20孔精加工
5 T05 ¢12铰刀 1 30 ¢12孔精加工
6 T06 90°倒角铣刀 1 ¢20孔倒角1.5×45°
7 T07 ¢6高速钢立铣刀 1 20 粗加工凸轮槽内外轮廓 底圆角R0.5
8 T08 ¢6硬质合金立铣刀 1 20 精加工凸轮槽内外轮廓
5、切削用量选择
凸轮槽内、外轮廓精加工时留0.1㎜铣削余量,精铰 、 两个孔时留0.1㎜铰削余量。主轴转数是1000r/min。二、轴类零件的加工工艺分析与实例
一渗碳主轴(如图2-2),每批40件,材料20Cr,除内外螺纹外S0.9~C59。渗碳件工艺比较复杂,必须对粗加工工艺绘制工艺草图(如图)。
主轴加工工艺过程
工 序 工种 工步 工序内容及要求 机床设备(略) 夹具 刀具 量具
1 车 按工艺草图车全部至尺寸
工艺要求:(1)一端钻中心孔φ2。(2)1:5锥度及莫氏3#内锥涂色检验,接触面>60%。(3)各需磨削的外圆对中心孔径向跳动不得大于0.1
CA6140 莫氏3号铰刀 莫氏3号塞规1:5环规
检查
2 淬 热处理S0.9-C59
3 车 去碳。一端夹牢,一端搭中心架
<1> 车端面,保证φ36右端面台阶到轴端长度为40
<2> 修钻中心孔φ5B型
<3> 调头
车端面,取总长340至尺寸,继续钻深至85,60°倒角
检查
4 车 一夹一顶 CA6140
<1> 车M30×1.5–6g左螺纹大径及ф30js5处至
Φ30

<2> 车φ25至φ25 、长43

<3> 车φ35至φ35

<4> 车砂轮越程槽
5 车 调头,一夹一顶
<1> 车M30×1.5–6g螺纹大径及φ30JS5处至φ30

<2> 车φ40至φ40

<3> 车砂轮越程槽
6 铣 铣19 二平面至尺寸

7 热 热处理HRC59
8 研 研磨二端中心孔
9 外磨 二顶尖,(另一端用锥堵) M1430A
<1> 粗磨φ40外圆,留0.1~0.15余量
<2> 粗磨φ30js外圆至φ30t (二处)台阶磨出即可
<3> 粗磨1:5锥度,留磨余量
10 内磨 用V型夹具(ф30js5二外圆处定位) M1432A
磨莫氏3#内锥(重配莫氏3#锥堵)精磨余量
0.2~0.25
11 热 低温时效处理(烘),消除内应力
12 车 一端夹住,一端搭中心架
<1> 钻φ10.5孔,用导向套定位,螺纹不攻 Z–2027
<2> 调头,钻孔φ5攻M6–6H内螺纹
<3> 锪孔口60°中心孔
<4> 调头套钻套钻孔ф10.5×25(螺纹不改)
<5> 锪60°中心孔,表面精糙度0.8 60°锪钻
检查
13 钳 <1> 锥孔内塞入攻丝套
<2> 攻M12–6H内螺纹至尺寸
14 研 研中心孔Ra0.8
15 外磨 工件装夹于二顶尖间
<1> 精磨φ40及φ35φ25外圆至尺寸
<2> 磨M30×1.5 M30×1.5左螺纹大径至30

<3> 半精磨ф30js5二处至ф30

<4> 精磨1:5锥度至尺寸,用涂色法检查按触面大于85% 1:5环规
16 磨 工件装夹二顶尖间,磨螺纹
<1> 磨M30×1.5–6g左螺纹至尺寸 M33×1.5左环规
<2> 磨M30×1.5–6g螺纹至尺寸 M33×1.5环规
17 研 精研中心孔Ra0.4
18 外磨 精磨、工件装夹于二顶尖间 M1432A
精磨2-φ30 至尺寸,注意形位公差

19 内磨 工件装在V型夹具中,以1–ф30外圆为基准,精磨莫氏3号内锥孔(卸堵,以2–ф30js5外圆定位),涂色检查接触面大于80%,注意技术要求“1”“2” MG1432A
检查
20 普 清洗涂防锈油,入库工件垂直吊挂 该轴类零件加工过程中几点说明:
1.采用了二中心孔为定位基准,符合前述的基准重合及基准统一原则。
2.该零件先以外圆作为粗基准,车端面和钻中心孔,再以二中心孔为定位基准粗车外圆,又以粗车外圆为定位基准加工锥孔,此即为互为基准原则,使加工有一次比一次精度更高的定位基准面。3号莫氏圆锥精度要求很高。因此,需用V型夹具以2-ф30js5外圆为定位基准达到形位公差要求。车内锥时,一端用卡爪夹住,一端搭中心架,亦是以外圆作为精基准。
3.半精加工、精加工外圆时,采用了锥堵,以锥堵中心孔作为精加工该轴外圆面的定位基准。
对锥堵要求:
① 锥堵具有较高精度,保证锥堵的锥面与其顶尖孔有较高同轴度。
② 锥堵安装后不宜更换,以减少重复安装引起的安装误差。
③ 锥堵外径靠近轴端处须制有外螺纹,以方便取卸锥堵。
4.主轴用20Cr低碳合金钢渗碳淬硬,对工件不需要淬硬部分发(M30×1.5-6g左、M30×1.5-6g、M12-6H、M6-6H)表面留2.5-3mm去碳层。
5.螺纹因淬火后,在车床上无法加工,如先车好螺纹后再淬火,会使螺纹产生变形。因此,螺纹一般不允许淬硬,所以在工件中的螺纹部分的直径和长度上必需留去碳层。对于内螺纹,在孔口也应留出3mm去碳层。
6.为保证中心孔精度,工件中心孔也不允许淬硬,为此,毛坯总长放长6mm。
7.为保证工件外圆的磨削精度,热处理后须安排研磨中心孔的工序,并要求达到较细的表面粗糙度。外圆磨削时,影响工件的圆度主要是由于二顶尖孔的同轴度,及顶尖孔的圆度误差。
8.为消除磨削应力,粗磨后安排低温时效工序(烘)。
9.要获高精度外圆,磨削时应分粗磨、半精磨、精磨工序。精磨安排在高精度磨床上加工。第三部分:编制数控加工程序
要求:能够根据图纸的技术要求和数控机床规定的指令格式与编程方法,正确地编制中等复杂典型零件的加工程序,或应用CAD/CAM自动编程软件编制较复杂零件的加工程序。(至少两个零件)。
一、 编制轴类零件(1)数控加工程序
如图3.1所示的零件。
毛坯为 42㎜的棒料,从右端至左端轴向走刀切削;粗加工每次进给深度1.5㎜,进给量为0.15㎜/r;精加工余量X向0.5㎜,Z向0.1㎜,切断刀刃宽4㎜。工件程序原点如图 图3.1所示。
该零件结构较为简单,属典型轴类零件,轴向尺寸80㎜,采用三爪卡盘装夹即可,选工件回转轴线及右侧面的交点为加工坐标系原点。
1. 选择刀具编号并确定换刀点
根据加工要求选用3包刀具:1号为外圆左边偏粗车刀,2号为外圆左偏精车刀,3号刀为外圆切断刀,换刀点与对刀点重合
2.确定加工路线
1)粗车外圆。从右至左切削外轮廓,采用粗车循环。
2)精车外圆。左端倒角→ 20㎜外圆→倒角→ 30㎜外圆→倒角→ 40㎜外圆。
(3)切断
3选择切削用量
选择切削用量参数见表3.1.
表3.1 选择切削用量参数转数指令 进给速度(mm/r) 刀具
粗车外圆 M43 0.15 1号
精车外圆 M44 0.1 2号
切断 M43 0.1 2号编写程序
O0001
M03T0101 M43 F0.15
G00 X43.Z0.
G01X0.
G00X42.Z0.
G71 U2.R0.3
G71 P1 Q2 U0.25 W0.1 F0.15
N1 G01 X18.
X20.Z-1.
Z-20.
X28.
X30.Z-21.
Z-50.
X38.
X40.Z-51.
Z-82.
N2 X44.
G00Z0
M00
M03 M44 T0202
G70 P1 Q2
G00Z5.
M00
M03 M43 T0303
G00 Z-44.
G01X0.
X44.
G00Z5.
M30 二、 编制轴类零件(2)数控加工程序
加工如图3-2所示零件,材料45钢,坯料 60×122。
1、刀具:T1——硬质合金93°右偏刀;
T2——宽3mm硬质合金割刀,D1——左刀尖。加工工序 材料 刀具
车外圆 硬质合金 T1
切槽 硬质合金 T2
该零件结构较为简单,属典型轴类零件,轴向尺寸120㎜,采用三爪卡盘装夹即可,选工件回转轴线及右侧面的交点为加工坐标系原点。
2、 选择刀具编号并确定换刀点
根据加工要求选用2包刀具:1号为外圆左边偏粗车刀,2号刀为外圆切断刀和切槽刀,换刀点与对刀点重合 3、程序编写
程序指令 说明
N10 G56 S300 M3 M7 T1; 选择刀具,设定工艺数据
N20 G96 S50 LIMS=3000 F0.3; 设定粗车恒线速度
N30 G0 X65 Z0; 快速引刀接近工件,准备车端面
N40 G1 X-2; 车端面
N50 G0 X65 Z10; 退刀
N60 CNAME=“LK2”; 轮廓调用
N70 R105=1 R106=0.2 R108=4 R109=0
R110=2 R111=0.3 R112=0.15; 毛坯循环参数设定
N80 LCYC95; 调用LCYC95循环轮廓粗加工
N90 G96 S80 LIMS=3000 F0.15; 设定精车恒线速度
N100 R105=5; 调整循环参数
N110 LCYC95; 调用LCYC95循环轮廓精加工
N120 G0 X100 Z150; 快速退刀,准备换割刀
N125 G97; 取消恒线速度
N130 T2 F.1 S250; 换T2割刀D1有效,调整工艺数据
N140 G0 X42 Z-33; 快速引刀至槽Z向左侧
N150 LCEXP2 P8; 调用子程序8次割8槽
N160 G0 X100 Z150 M9; 快速退刀,关冷却
N170 M2; 程序结束
LK2
N10 G1 X0 Z0;
N20 G3 X20 Z-10 CR=10;
N30 G1 Z-20;
N40 G2 X30 Z-25 CR=5;
N50 G1 X39.98 CHF=2.818;
N60 Z-100;
N70 X60 Z-105;
N80 M17;
LCEXP2
N10 G91 G1 X-14;
N20 G4 S2;
N30 G1 X14;
N40 G0 Z-8;
N50 G90 M17; 第四部分:绘制CAD零件图

2. MES的功能模块

1. 资源分配和状态管理(Resource Allocation and Status)(MES系统)

管理机床、工具、人员、物料、其它设备以及其它生产实体(例如进行加工必须准备的工艺文件、数控加工程序等文档资料),用以保证生产的正常进行。它还要提 供资源使用情况的历史记录,确保设备能够正确安装和运转,以提供实时的状态信息。对这些资源的管理,还包括为满足作业排程计划目标对其所作的预定和调度。

2. 运作/详细调度(Operations/Detail Scheling)

在具体生产单元的操作中,根据相关的优先级(Priorities)、属性(Attributes)、特征(Characteristics)以及配方 (Recipes),提供作业排程功能。例如,当根据形状和其他特征对颜色顺序进行合理排序时,可最大限度减少生产过程中的准备时间。这个调度功能的能力 有限,主要是通过识别替代性、重叠性或并行性操作来准确计算出时间、设备上下料,以做出相应调整来适应变化。

3. 生产单元分配(Dispatching Proction Units)

以作业、订单、批量、成批和工作单等形式管理生产单元间工作的流动。分配信息用于作业顺序的定制以及车间有事件发生时的实时变更。生产单元分配功能具有变更车间已制定的生产计划的能力,对返修品和废品进行处理,用缓冲区管理的方法控制任意位置的在制品数量。

4. 文档管理(Document Control)

管理生产单元有关的记录和表格,包括工作指令、配方、工程图纸、标准工艺规程、零件的数控加工程序、批量加工记录、工程更改通知以及班次间的通讯记录,并 提供了按计划编辑信息的功能。它将各种指令下达给操作层,包括向操作者提供操作数据或向设备控制层提供生产配方。此外它还包括对环境、健康和安全制度信 息、以及ISO信息的管理与完整性维护,例如纠正措施控制程序。当然,还有存储历史信息功能。

5. 数据采集(Data Collection/Acquisition)

能通过数据采集接口来获取生产单元的记录和表格上填写的各种作业生产数据和参数。这些数据可以从车间以手工方式录入或自动从设备上获取按分钟级实时更新的数据。

6. 劳务管理(Labor Management)

提供按分钟级更新的内部人员状态,作为作业成本核算的基础。包括出勤报告、人员的认证跟踪、以及追踪人员的辅助业务能力,如物料准备或工具间工作情况。劳务管理与资源分配功能相互作用,共同确定最佳分配。

7. 质量管理(Quality Management)

对生产制造过程中获得的测量值进行实时分析,以保证产品质量得到良好控制,质量问题得到确切关注。该功能还可针对质量问题推荐相关纠正措施,包括对症状、 行为和结果进行关联以确定问题原因。质量管理还包括对统计过程控制(SPC)和统计质量控制(SQC)的跟踪,实验室信息管理系统(LIMS)的线下检修 操作和分析管理。

8. 过程管理(Process Management)

监控生产过程、自动纠错或向用户提供决策支持以纠正和改进制造过程活动。这些活动具有内操作性,主要集中在被监控的机器和设备上,同时具有互操作性,跟踪 从一项到另外一项作业流程。过程管理还包括报警功能,使车间人员能够及时察觉到出现了超出允许误差的过程更改。通过数据采集接口,过程管理可以实现智能设 备与制造执行系统之间的数据交换。

9. 维护管理(Maintenance Management)

跟踪和指导作业活动,维护设备和工具以确保它们能正常运转并安排进行定期检修,以及对突发问题能够即刻响应或报警。它还能保留以往的维护管理历史记录和问题,帮助进行问题诊断。

10. 产品跟踪和系谱(Proct Tracking and Genealogy)

提供工件在任一时刻的位置和状态信息。其状态信息可包括:进行该工作的人员信息;按供应商划分的组成物料、产品批号、序列号、当前生产情况、警告、返工或与产品相关的其它异常信息。其在线跟踪功能也可创建一个历史记录,使得零件和每个末端产品的使用具有追溯性。

11. 性能分析(Performance Analysis)

提供按分钟级更新的实际生产运行结果的报告信息,对过去记录和预想结果进行比较。运行性能结果包括资源利用率、资源可获取性、产品单位周期、与排程表的一 致性、与标准的一致性等指标的测量值。性能分析包含SPC/SQC。该功能从度量操作参数的不同功能提取信息,当前性能的评估结果以报告或在线公布的形式 呈现。

3. 开发环境指的是什么工业软件的内涵和发展趋势

「 1.工业应用软件的内涵」
工业软件主要包括工业应用软件和嵌入式工业软件。工业应用软件主要分三大类,包含范畴如图1所示。
图1 工业应用软件包含的范畴
(1)产品创新数字化软件领域:支持工业企业进行研发创新的工具类和平台类软件。具体包括:计算机辅助设计(CAD,主要包括计算机辅助机械MCAD和电气设计ECAD)、工程仿真(CAE)、计算机辅助制造(CAM,主要指数控编程软件)、计算机辅助工艺规划(CAPP)、电子设计自动化(EDA)、数字化制造(digital manufacturing)、产品数据管理/产品全生命周期管理(PDM/PLM,涵盖了产品研发与制造、产品使用和报废回收再利用三个阶段),以及相关的专用软件。例如公差分析、软件代码管理或应用生命周期管理(CASE/ALM)、大修维护管理(MRO)、三维浏览器、试验数据管理、设计成本管理、设计质量管理、三维模型检查、可制造性分析等。AEC行业(建筑与施工行业)也广泛应用CAD、CAE软件。CAD软件还包括工厂设计、船舶设计,以及焊接CAD、模具设计等专用软件,CAD软件经历了从二维工程图甩图板,到转向三维特征建模,进而实现基于模型的产品定义(model based definition,MBD)的过程。数字化制造主要包括工厂的设备布局仿真、物流仿真、人因工程仿真等功能。CAE软件包含的门类很多,可以从多个维度进行划分,主要包括运动仿真、结构仿真、动力学仿真、流体力学仿真、热力学仿真、电磁场仿真、工艺仿真(涵盖铸造、注塑、焊接、增材制造、复合材料等多种制造工艺)、振动仿真、碰撞仿真、疲劳仿真、声学仿真、爆炸仿真等,以及设计优化、拓扑优化、多物理场仿真等软件,另外还有仿真数据、仿真流程和仿真知识管理软件。近年来,在三维建模技术、三维可视化技术、虚拟仿真技术和工业物联网技术的发展与交叉融合的背景下,数字孪生技术(digital twin)应运而生,成为当前学术界和工业界关注的热点。创成式设计(genrative design)则因引入全新的设计方式,融合人工智能技术,也成为了业界关注的热点。
(2)管理软件领域:支持企业业务运营的各类管理软件。具体包括:企业资源计划(ERP)、制造执行系统(MES)、客户关系管理(CRM)、供应链管理(SCM)、供应商关系管理(SRM)、企业资产管理(EAM)、人力资产管理(HCM)、商业智能(BI)、高级计划与排程/先进生产排程(APS)、质量管理系统(QMS)、项目管理(PM)、能源管理(EMS)、主数据管理(MDM)、实验室管理(LIMS)、业务流程管理(BPM)、协同办公与企业门户等。ERP是从物料需求计划(MRP)、制造资源计划(MRPII)发展起来的。CRM、HCM、BI、PM、协同办公和企业门户应用于各行各业,但工业企业对这些系统有特定的功能需求。例如,人力资产管理具体包括人力资源管理、人才管理和劳动力管理,其中,工业企业对劳动力管理有特定需求。随着移动通信技术的普及,越来越多的管理软件支持手机APP、基于角色分配权限、集成位置信息,能够将相关信息推送到不同类型的用户。
(3)工控软件领域:支持对设备和自动化产线进行管控、数据采集和安全运行的软件。具体包括:先进过程控制(APC)、集散控制系统(DCS)、可编程逻辑控制器(PLC)、数据采集与监视控制系统(SCADA)、组态软件、分布式数控与机器数据采集(DNC/MDC),以及工业网络安全软件等。其中,DCS、PLC和SCADA的控制软件与硬件设备紧密集成,是工业物联网应用的基础。
工业应用软件的特质是包含复杂的算法和逻辑、融合工程实践的Know-how、与硬件系统和设备集成、具有鲜明的行业特点、能够满足客户的个性化需求、提供二次开发平台、实现端到端的集成应用才能发挥预期价值等。因此,很多工业软件企业将软件进行配置,形成行业解决方案,以便缩短实施与交付周期。
「 2.工业软件的发展趋势」
工业软件具有鲜明的行业特质,不同行业、不同生产模式、不同产品类型的制造企业,对工业软件的需求差异很大。因此,工业软件需要很强的可配置性,并具备二次开发的能力。工业软件蕴含着业务流程和工艺流程,包含诸多算法,因此,需要结合企业的实际需求进行实施和落地。制造企业需要应用的工业软件类型众多,要取得实效,需要实现工业软件的集成,构建集成平台。
工业软件正在从以下7个方面进行演进:
1)工业软件正在重塑制造业
工业软件的重要程度不断提升,软件成为体现产品差异化的关键。例如,70%的汽车创新来自汽车电子,而60%的汽车电子创新属于软件创新;智能手机的核心差异化主要体现在操作系统和应用软件,直接影响用户体验。另外,工业互联网的应用也涉及到诸多工业软件,为工业设备插上了智慧的翅膀。
“软件定义”成为业界共识,如软件定义的产品、软件定义的机器(图2)、软件定义的数据中心、软件定义的网络,软件定义的业务流程,数据驱动智能决策等。对工业软件的开发与应用效果和掌控程度,已成为制造企业体现差异化竞争优势的关键。工业软件的应用贯穿企业的整个价值链,从研发、工艺、采购、制造、营销、物流供应链到服务,打通数字主线(digital thread);从车间层的生产控制到企业运营,再到决策,建立产品、设备、产线到工厂的数字孪生模型(digital twin);从企业内部到外部,实现与客户、供应商和合作伙伴的互联和供应链协同,企业所有的经营活动都离不开工业软件的全面应用。因此,工业软件正在重塑制造业,成为制造业的数字神经系统。
图2 软件定义的机器(来源:GE)
2)工业软件的应用模式走向云端和设备端
工业软件的应用模式已经从单机应用、客户端/服务器(C/S)、浏览器/服务器(B/S),逐渐发展到走向云端部署和边缘端部署(嵌入式软件)。早期的工业软件是基于PC的单机应用,很多软件带有“加密狗”。后来,软件应用出现了网络版。ERP、SCM等管理软件的应用是基于C/S的应用模式,需要在客户机和服务器都安装软件,在服务器安装数据库。随着互联网的兴起,越来越多的工业软件转向B/S架构,不再需要在客户端安装软件,直接在浏览器上输入网址即可登录,这使得软件升级和迁移变得更加便捷。服务器虚拟化、桌面虚拟化等技术则可以帮助企业更好地利用服务器资源。
此外,很多智能装备,例如无线通信基站和程控交换机内部,部署了诸多嵌入式的控制、检测、计算、通讯等软件。近年来,设备端的边缘计算能力迅速增强,一些原来PC上部署的软件也移植到设备端,实现边缘计算,更高效地进行数据处理和分析。
3)工业软件的部署方式从企业内部转移到外部
工业软件的部署模式从企业内部部署(on premise)转向私有云、公有云以及混合云。云计算技术的发展,使得企业可以更高效、安全地管理自己的计算能力和存储资源,建立私有云平台;中小企业可以直接应用公有云服务,不再自行维护服务器;大型企业则可以将涉及关键业务和数据的应用系统放在私有云,而将其他面向客户、供应商及合作伙伴,以及安全级别要求不高的应用系统放在外部的数据中心,实现混合云应用。
国外管理软件公司纷纷加速向云部署转型,并购基于公有云的应用系统。向云服务转型,成为众多管理软件公司最大的增长点。如Salesforce提供完全基于公有云的CRM系统,取得了巨大的成功;原SolidWorks创业团队创建的Onshape(图3)是一个完全基于公有云的三维CAD系统,可以在任何终端进行三维设计,方便地进行协作,已累计获得1.69亿美元的融资,2019年被PTC公司以4.7亿美元并购;甲骨文公司已提供支持多租户的数据库,能够确保运行在公有云平台的应用系统能够彼此独立。另外,已有很多软件公司支持软件的灵活部署,可以在On Premise、私有云、公有云和混合云的模式之间动态调整。
随着云应用的不断深入,越来越多的企业用户开始接受基于公有云的部署方式,将复杂的IT运维工作交给大型的互联网IT公司,例如亚马逊云(AWS)、微软Azure云平台等,其最大的优势是管理专业且方便。我国的阿里云、华为云、腾讯云、京东云以及三大电信运营商也都提供了多种形式的云服务。有的公司还推出了托管服务(managed service),帮助制造企业管理部署在企业内部的应用系统。
图3 完全基于公有云平台的三维设计软件Onshape
4)工具类软件从销售许可证转向订阅模式
工具类软件的销售方式从销售许可证(license)转向订阅模式(subscription)。例如,Autodesk公司的CAD软件已经不再销售License,只支持订阅方式;PTC的Creo软件也在大力转向订阅模式。订阅模式的软件并不一定都是基于云部署,可以仍然是在企业内部安装,但是通过订阅模式定期获得授权密码
订阅模式是一种对于用户企业和软件公司而言双赢的模式。用户企业可以根据应用需求,灵活地增减用户数,还可以即时获得最新的软件版本。而对于软件公司,则可以确保用户产生持续的现金流。虽然当期某个用户企业带来的收入可能减少,但是几年下来,订阅服务的收入通常会超过销售固定License的营收。同时,由于用户企业已经产生了大量数据,也不可能轻易更换软件。正因为如此,有的软件企业在向订阅模式转型的过程中,尽管有几年时间营业收入下降,甚至出现亏损,但股票价格却反而节节攀升。
5)工业软件走向平台化、组件化,解构为工业APP
工业软件的架构从紧耦合转向松耦合,呈现出组件化、平台化、服务化,PaaS+SaaS的特点。早期的工业软件是固化的整体,牵一发动全身,修改起来很麻烦。后来出现了面向对象的开发语言,进而产生了面向服务的架构(SOA),软件的功能模块演化为Web Service组件,通过对组件进行配置,将多个组件连接起来,完成业务功能。
互联网的浪潮催生了应用服务提供商(application service provider,ASP),后来演化为SaaS服务。然而,单纯将软件服务化并不能满足企业客户差异化的需求,只有将软件开发的平台也迁移到互联网平台,才能授之以渔。PaaS平台是否强大,成为工业软件能否向云模式成功转型的关键。
近年来,又出现了微服务架构,每个微服务可以用不同的开发工具开发,独立进行运行和维护,通过轻量化的通信机制将微服务组合起来,完成特定功能。管理软件,尤其是电商平台在前台和后台之间,增加了中台系统,以便能够及时处理海量的并发需求和数据。
工业软件正在解构为运行于工业云平台或者工业互联网平台上的工业APP(其参考模型见图4),可以实现即插即用,操作简便易用,随需而变。工业APP蕴含了工业技术和Know-how。随着工业PaaS的标准不断完善,不同企业开发的工业APP将可以实现互操作,从而催生工业APP Store,方便地进行交易和应用。
图4 工业APP参考模型(来源:工业互联网APP白皮书,工业技术软件化联盟,2018.4)
6)工业软件的开发环境转向开放、开源
工业软件的开发环境已从封闭、专用的平台走向开放和开源的平台。Linux操作系统的广泛应用显著降低了企业的IT成本;Java以其跨平台应用的特点,得到了工业软件开发商的青睐;在人工智能领域,Google推出了Tensorflow开源引擎,使得企业可以快速开展相关应用;智能机器人领域的开源操作系统ROS,使得IT专家能够快速开发机器人应用;ARM公司发布了开源的物联网操作系统Mbed OS。在CAD软件领域,Intellicad Technology Consortium(ITC组织)提供了一个类似AutoCAD的CAD开源平台,也在全球吸引了很多软件开发商。
7)工业软件的运行平台从PC转向移动端
工业软件的运行平台从以PC为主,走向支持多种移动操作系统(安卓苹果微信小程序等)。如果要开发支持多个移动操作系统的APP,对于工业软件开发商而言,无疑需要并行维护多套系统。因此,很多工业软件开发商选择了基于HTML5来开发适应Windows和多种移动操作系统的软件。

阅读全文

与lims在数控程序里是什么意思相关的资料

热点内容
java部分中文乱码 浏览:228
iis添加dll文件 浏览:578
appleld的代码是什么形式 浏览:659
图片转word文件保存在哪 浏览:757
count是哪个编程语言 浏览:85
写言情小说哪个网站好 浏览:365
iphone外接电视 浏览:423
哪些地方网络信号更好些 浏览:753
jar反编辑工具 浏览:614
描述数据波动大小有哪些 浏览:584
u盘exfat可复制4g以上的文件吗 浏览:667
a4大小的文件过塑多少钱 浏览:26
畅天游2app在哪里下载 浏览:844
微信看文字的图片 浏览:298
将文件直接粘入word 浏览:134
VIP解析APP有哪些 浏览:463
怎样彻底卸载cad文件 浏览:829
iphone4港版 浏览:624
怎么用命令打开程序错误 浏览:665
iphone6怎么改控制中心 浏览:808

友情链接