导航:首页 > 编程语言 > 递归算法的伪代码表示

递归算法的伪代码表示

发布时间:2024-04-09 23:03:50

① 按要求设计递归算法。只需写出伪代码或画流程图,不需语言实现,但算法必须完整清晰。

开始的程序控制语句的基础练习,如开头:

酒店与多个循环,分支控制结构,以确定如何在控制台输出三角形,倒三角形,等边三角形,等腰三角形练习,正方形,长方形,平行四边形,菱形,另一个是大多形状。和尽可能从用户输入的参数来完成图形输出程序的适应。

包装 - 被转移到不同凡响,搜索算法学习练习,如:递归算法,帕斯卡三角形,冒泡,快速插入排序算法,如运动。

- 以后,你可以学习Swing桌面开发的基本知识。使用Swing良好的设计,进一步学习Java语言来实现各种设计模式,比如Swing是最常见的模式,观察者模式,单例模式,工厂模式,抽象工厂模式,等等。以后有限公司返回了,你可以学到一些知识的J2EE,如JSP,Servlet的,以及一些常用的框架如Hibernate,Spring中,Struts中,TopLink的,ibitas,DWR等上。

这些只是Java的知识,要想J2EE,还要学习HTML,JS,XML,CSS,AJAX和一些常见的富客户端框架库,如原型,ExtJS的,JQuery的,等。许多

学习内容,要循序渐进,以达到良好的效果。否则你不会得到一半。需要注意的是学习的过程中必须采取一些好的经验(设计模式是公认的获得经验)学习,所以能迅速提高。

② 用递归算法先序中序后序遍历二叉树

1、先序

void PreOrderTraversal(BinTree BT)

{

if( BT )

{

printf(“%d ”, BT->Data); //对节点做些访问比如打印

PreOrderTraversal(BT->Left); //访问左儿子

PreOrderTraversal(BT->Right); //访问右儿子

}

}

2、中序

void InOrderTraversal(BinTree BT)

{

if(BT)

{

InOrderTraversal(BT->Left);

printf("%d ", BT->Data);

InOrderTraversal(BT->Right);

}

}

3、后序

void PostOrderTraversal(BinTree BT)

{

if (BT)

{

PostOrderTraversal(BT->Left);

PostOrderTraversal(BT->Right);

printf("%d ", BT->Data);

}

}

(2)递归算法的伪代码表示扩展阅读:

注意事项

1、前序遍历

从整棵二叉树的根结点开始,对于任意结点VV,访问结点VV并将结点VV入栈,并判断结点VV的左子结点LL是否为空。若LL不为空,则将LL置为当前结点VV;若LL为空,则取出栈顶结点,并将栈顶结点的右子结点置为当前结点VV。

2、中序遍历

从整棵二叉树的根结点开始,对于任一结点VV,判断其左子结点LL是否为空。若LL不为空,则将VV入栈并将L置为当前结点VV;若LL为空,则取出栈顶结点并访问该栈顶结点,然后将其右子结点置为当前结点VV。重复上述操作,直到当前结点V为空结点且栈为空,遍历结束。

3、后序遍历

将整棵二叉树的根结点入栈,取栈顶结点VV,若VV不存在左子结点和右子结点,或VV存在左子结点或右子结点,但其左子结点和右子结点都被访问过了,则访问结点VV,并将VV从栈中弹出。若非上述两种情况,则将VV的右子结点和左子结点依次入栈。重复上述操作,直到栈为空,遍历结束。

③ 请使用伪代码编写算法: 要求分别用循环结构和递归结构求解n!。 n!= 1 当n=0 n!=n*(n--1)! 当n>0

递归
int fun(n){
if(n==0) return 1;

return n*(fun(n-1));

}
循环
int fun(n){
int result = 1;

if (n==0) return result;

for(int i=1;i<=n;i++){
result *= i;

}

return result;

}

④ 01背包问题

算法分析

对于背包问题,通常的处理方法是搜索。
用递归来完成搜索,算法设计如下:
function Make( i {处理到第i件物品} , j{剩余的空间为j}:integer) :integer;
初始时i=m , j=背包总容量
begin
if i:=0 then
Make:=0;
if j>=wi then (背包剩余空间可以放下物品 i )
r1:=Make(i-1,j-wi)+v; (第i件物品放入所能得到的价值 )
r2:=Make(i-1,j)(第i件物品不放所能得到的价值 )
Make:=max{r1,r2}
end;
这个算法的时间复杂度是O(2^n),我们可以做一些简单的优化。
由于本题中的所有物品的体积均为整数,经过几次的选择后背包的剩余空间可能会相等,在搜索中会重复计算这些结点,所以,如果我们把搜索过程中计算过的结点的值记录下来,以保证不重复计算的话,速度就会提高很多。这是简单?quot;以空间换时间"。
我们发现,由于这些计算过程中会出现重叠的结点,符合动态规划中子问题重叠的性质。
同时,可以看出如果通过第N次选择得到的是一个最优解的话,那么第N-1次选择的结果一定也是一个最优解。这符合动态规划中最优子问题的性质。
考虑用动态规划的方法来解决,这里的:
阶段是:在前N件物品中,选取若干件物品放入背包中;
状态是:在前N件物品中,选取若干件物品放入所剩空间为W的背包中的所能获得的最大价值;
决策是:第N件物品放或者不放;
由此可以写出动态转移方程:
我们用f[i,j]表示在前 i 件物品中选择若干件放在所剩空间为 j 的背包里所能获得的最大价值
f[i,j]=max{f[i-1,j-Wi]+Pi (j>=Wi), f[i-1,j]}
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c的背包中”,此时能获得的最大价值就是f[v-c]再加上通过放入第i件物品获得的价值w。
这样,我们可以自底向上地得出在前M件物品中取出若干件放进背包能获得的最大价值,也就是f[m,w]
算法设计如下:
procere Make;
begin
for i:=0 to w do
f[0,i]:=0;
for i:=1 to m do
for j:=0 to w do begin
f[i,j]:=f[i-1,j];
if (j>=w) and (f[i-1,j-w]+v>f[i,j]) then
f[i,j]:=f[i-1,j-w]+v;
end;
writeln(f[m,wt]);
end;
由于是用了一个二重循环,这个算法的时间复杂度是O(n*w)。而用搜索的时候,当出现最坏的情况,也就是所有的结点都没有重叠,那么它的时间复杂度是O(2^n)。看上去前者要快很多。但是,可以发现在搜索中计算过的结点在动态规划中也全都要计算,而且这里算得更多(有一些在最后没有派上用场的结点我们也必须计算),在这一点上好像是矛盾的。
事实上,由于我们定下的前提是:所有的结点都没有重叠。也就是说,任意N件物品的重量相加都不能相等,而所有物品的重量又都是整数,那末这个时候W的最小值是:1+2+2^2+2^3+……+2^n-1=2^n -1
此时n*w>2^n,动态规划比搜索还要慢~~|||||||所以,其实背包的总容量W和重叠的结点的个数是有关的。
考虑能不能不计算那些多余的结点……
优化时间复杂度
以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[v]呢?f[v]是由f[v]和f[v-c]两个子问题递推而来,能否保证在推f[v]时(也即在第i次主循环中推f[v]时)能够得到f[v]和f[v-c]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c]保存的是状态f[v-c]的值。伪代码如下:
for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c]+w};
其中的f[v]=max{f[v],f[v-c]}一句恰就相当于我们的转移方程f[v]=max{f[v],f[v-c]},因为现在的f[v-c]就相当于原来的f[v-c]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[v]由f[v-c]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。
事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。
过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。
procere ZeroOnePack(cost,weight)
for v=V..cost
f[v]=max{f[v],f[v-cost]+weight}
注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。
有了这个过程以后,01背包问题的伪代码就可以这样写:
for i=1..N
ZeroOnePack(c,w);
初始化的细节问题

我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。
如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。
如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。
为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。
这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解

阅读全文

与递归算法的伪代码表示相关的资料

热点内容
word删除尾注分隔符 浏览:773
公告质疑需要哪些文件 浏览:608
数据库模型是干什么的 浏览:404
win10的驱动怎么安装驱动 浏览:320
word文件水印怎么取消 浏览:443
rhel6的镜像文件在哪里下载 浏览:571
成功正能量微信头像 浏览:848
wps表格如何恢复数据 浏览:264
linuxc静态库创建 浏览:838
u盘有微信文件但微信恢复不了 浏览:585
苹果的网站数据是什么 浏览:22
ps滚字教程 浏览:237
win7网络邻居如何保存ftp 浏览:186
安卓客户端代理服务器 浏览:572
编程用苹果 浏览:659
51虚拟机的文件管理在哪里 浏览:13
win10系统有没有便签 浏览:722
java引用传递和值传递 浏览:109
oracle下载安装教程 浏览:854
php筛选数据库 浏览:830

友情链接