导航:首页 > 编程语言 > nodejstoolbox

nodejstoolbox

发布时间:2023-12-03 02:53:21

A. 如何停止本地运行的nodejs服务器

可以通过如下代码实现nodejs服务器打开关闭。 相关代码如下:
var express = require(‘express’);

var app = express();
var http = require(‘http’).Server(app); var io = require(‘socket.io’)(http);
//打开服内务器容

server.prototype.openServer = function(){ http.listen(3001, function(){ console.log(‘listening on *:3001’); }); }

//关闭服务器
server.prototype.stopServer = function(){ http.close(function(){ console.log(‘stop listening’); }) } 在这里我将打开和关闭服务器写成两个函数,方便调用。

B. python可视化神器——pyecharts库

无意中从今日头条中看到的一篇文章,可以生成简单的图表。据说一些大数据开发们也是经常用类似的图表库,毕竟有现成的,改造下就行,谁会去自己造轮子呢。

pyecharts是什么?

pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是网络开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒, pyecharts 是为了与 Python 进行对接,方便在 Python 中直接使用数据生成图 。使用pyecharts可以生成独立的网页,也可以在flask、django中集成使用。

安装很简单:pip install pyecharts

如需使用 Jupyter Notebook 来展示图表,只需要调用自身实例即可,同时兼容 Python2 和 Python3 的 Jupyter Notebook 环境。所有图表均可正常显示,与浏览器一致的交互体验,简直不要太强大。

参考自pyecharts官方文档: http://pyecharts.org

首先开始来绘制你的第一个图表

使用 Jupyter Notebook 来展示图表,只需要调用自身实例即可

add() 主要方法,用于添加图表的数据和设置各种配置项

render() 默认将会在根目录下生成一个 render.html 的文件,文件用浏览器打开。

使用主题

自 0.5.2+ 起,pyecharts 支持更换主体色系

使用 pyecharts-snapshot 插件

如果想直接将图片保存为 png, pdf, gif 格式的文件,可以使用 pyecharts-snapshot。使用该插件请确保你的系统上已经安装了 Nodejs 环境。

安装 phantomjs $ npm install -g phantomjs-prebuilt

安装 pyecharts-snapshot $ pip install pyecharts-snapshot

调用 render 方法 bar.render(path='snapshot.png') 文件结尾可以为 svg/jpeg/png/pdf/gif。请注意,svg 文件需要你在初始化 bar 的时候设置 renderer='svg'。

图形绘制过程

基本上所有的图表类型都是这样绘制的:

chart_name = Type() 初始化具体类型图表。

add() 添加数据及配置项。

render() 生成本地文件(html/svg/jpeg/png/pdf/gif)。

add() 数据一般为两个列表(长度一致)。如果你的数据是字典或者是带元组的字典。可利用 cast() 方法转换。

多次显示图表

从 v0.4.0+ 开始,pyecharts 重构了渲染的内部逻辑,改善效率。推荐使用以下方式显示多个图表。如果使是 Numpy 或者 Pandas,可以参考这个示例

当然你也可以采用更加酷炫的方式,使用 Jupyter Notebook 来展示图表,matplotlib 有的,pyecharts 也会有的

Note: 从 v0.1.9.2 版本开始,废弃 render_notebook() 方法,现已采用更加  pythonic  的做法。直接调用本身实例就可以了。

比如这样

还有这样

如果使用的是自定义类,直接调用自定义类示例即可

图表配置

图形初始化

通用配置项

xyAxis:平面直角坐标系中的 x、y 轴。(Line、Bar、Scatter、EffectScatter、Kline)

dataZoom:dataZoom 组件 用于区域缩放,从而能自由关注细节的数据信息,或者概览数据整体,或者去除离群点的影响。(Line、Bar、Scatter、EffectScatter、Kline、Boxplot)

legend:图例组件。图例组件展现了不同系列的标记(symbol),颜色和名字。可以通过点击图例控制哪些系列不显示。

label:图形上的文本标签,可用于说明图形的一些数据信息,比如值,名称等。

lineStyle:带线图形的线的风格选项(Line、Polar、Radar、Graph、Parallel)

grid3D:3D笛卡尔坐标系组配置项,适用于 3D 图形。(Bar3D, Line3D, Scatter3D)

axis3D:3D 笛卡尔坐标系 X,Y,Z 轴配置项,适用于 3D 图形。(Bar3D, Line3D, Scatter3D)

visualMap:是视觉映射组件,用于进行『视觉编码』,也就是将数据映射到视觉元素(视觉通道)

markLine&markPoint:图形标记组件,用于标记指定的特殊数据,有标记线和标记点两种。(Bar、Line、Kline)

tooltip:提示框组件,用于移动或点击鼠标时弹出数据内容

toolbox:右侧实用工具

图表详细

Bar(柱状图/条形图)

Bar3D(3D 柱状图)

Boxplot(箱形图)

EffectScatter(带有涟漪特效动画的散点图)

Funnel(漏斗图)

Gauge(仪表盘)

Geo(地理坐标系)

GeoLines(地理坐标系线图)

Graph(关系图)

HeatMap(热力图)

Kline/Candlestick(K线图)

Line(折线/面积图)

Line3D(3D 折线图)

Liquid(水球图)

Map(地图)

Parallel(平行坐标系)

Pie(饼图)

Polar(极坐标系)

Radar(雷达图)

Sankey(桑基图)

Scatter(散点图)

Scatter3D(3D 散点图)

ThemeRiver(主题河流图)

TreeMap(矩形树图)

WordCloud(词云图)

用户自定义

Grid 类:并行显示多张图

Overlap 类:结合不同类型图表叠加画在同张图上

Page 类:同一网页按顺序展示多图

Timeline 类:提供时间线轮播多张图

统一风格

注:pyecharts v0.3.2以后,pyecharts 将不再自带地图 js 文件。如用户需要用到地图图表,可自行安装对应的地图文件包。

地图文件被分成了三个 Python 包,分别为:

全球国家地图:

echarts-countries-pypkg

中国省级地图:

echarts-china-provinces-pypkg

中国市级地图:

echarts-china-cities-pypkg

直接使用python的pip安装

但是这里大家一定要注意,安装完地图包以后一定要重启jupyter notebook,不然是无法显示地图的。

显示如下:

总得来说,这是一个非常强大的可视化库,既可以集成在flask、Django开发中,也可以在做数据分析的时候单独使用,实在是居家旅行的必备神器啊

阅读全文

与nodejstoolbox相关的资料

热点内容
雪佛兰车载app怎么样 浏览:133
637的微信版本如何建百人群 浏览:41
外梯形螺纹怎么编程 浏览:986
vs2010vb工具箱 浏览:938
win10重装多少钱 浏览:662
数据库系统由什么什么等构成 浏览:413
java父子关系生成树 浏览:936
达梦数据库oci编程需要哪些库 浏览:64
手机数据恢复精灵导出什么意思 浏览:930
js字体红色 浏览:942
win10文件被占用 浏览:995
压缩文件格式转换 浏览:651
数控编程需要掌握哪些指令 浏览:427
不用学编程的专业有哪些 浏览:14
苹果手机什么软件可以看STP 浏览:219
淘宝联盟程序 浏览:989
苹果拨号盘代码所有 浏览:808
微信里的word文件可以导出吗 浏览:881
word文件2页怎么能变成1页 浏览:959
sql数据库怎样打开mdf文件 浏览:638

友情链接