① 编程技巧:java串口通信简介
嵌入式系统或传感器网络的很多应用和测试都需要通过PC机与嵌入式设备或传感器节点进行通信 其中 最常用的接口就是RS 串口和并口(鉴于USB接口的复杂性以及不需要很大的数据传输量 USB接口用在这里还是显得过于奢侈 况且目前除了SUN有一个支持USB的包之外 我还没有看到其他直接支持USB的Java类库) SUN的CommAPI分别提供了对常用的RS 串行端口和IEEE 并行端口通讯的支持 RS C(又称EIA RS C 以下简称RS )是在 年由美国电子工业协会(EIA)联合贝尔系统 调制解调器厂家及计算机终端生产厂家共同制定的用于串行通讯的标准 RS 是一个全双工的通讯协议 它可以同时进行数据接收和发送的工作
常见的Java串口包
目前 常见的Java串口包有SUN在 年发布的串口通信API m jar(Windows下) m jar(linux/Solaris);IBM的串口通信API以及一个开源的实现 鉴于在Windows下SUN的API比较常用以及IBM的实现和SUN的在API层面都是一样的 那个开源的实现又不像两家大厂的产品那样让人放心 这里就只介绍SUN的串口通信API在Windows平台下的使用
串口包的安装(Windows下)
到SUN的网站下载javam win zip 包含的东西如下所示
按照其使用说明(l)的说法 要想使用串口包进行串口通信 除了设置好环境变量之外 还要将win dll复制到 in目录下;将m jar复制到 lib;把m properties也同样拷贝到 lib目录下 然而在真正运行使用串口包的时候 仅作这些是不够的 因为通常当运行 java MyApp 的时候 是由JRE下的虚拟机启动MyApp的 而我们只复制上述文件到JDK相应目录下 所以应用程序将会提示找不到串口 解决这个问题的方法很简单 我们只须将上面提到的文件放到JRE相应的目录下就可以了
值得注意的是 在网络应用程序中使用串口API的时候 还会遇到其他更复杂问题 有兴趣的话 你可以查看CSDN社区中 关于网页上Applet用javam 读取客户端串口的问题 的帖子
串口API概览
m CommPort
这是用于描述一个被底层系统支持的端口的抽象类 它包含一些高层的IO控制方法 这些方法对于所有不同的通讯端口来说是通用的 SerialPort 和ParallelPort都是它的子类 前者用于控制串行端口而后者用于控这并口 二者对于各自底层的物理端口都有不同的控制方法 这里我们只关心SerialPort
m CommPortIdentifier
这个类主要用于对串口进行管理和设置 是对串口进行访问控制的核心类 主要包括以下方法
l 确定是否有可用的通信端口
l 为IO操作打开通信端口
l 决定端口的所有权
l 处理端口所有权的争用
l 管理端口所有权变化引发的事件(Event)
m SerialPort
这个类用于描述一个RS 串行通信端口的底层接口 它定义了串口通信所需的最小功能集 通过它 用户可以直接对串口进行读 写及设置工作
串口API实例
大段的文字怎么也不如一个小例子来的清晰 下面我们就一起看一下串口包自带的例子 SerialDemo中的一小段代码来加深对串口API核心类的使用方法的认识
列举出本机所有可用串口
voidlistPortChoices(){ CommPortIdentifierportId; Enumerationen=CommPortIdentifier getPortIdentifiers(); //iteratethroughtheports while(en hasMoreElements()){ portId=(CommPortIdentifier)en nextElement(); if(portId getPortType()==CommPortIdentifier PORT_SERIAL){ System out println(portId getName()); } } portChoice select(parameters getPortName()); }
以上代码可以列举出当前系统所有可用的串口名称 我的机器上输出的结果是 和
串口参数的配置
串口一般有如下参数可以在该串口打开以前配置进行配置
包括波特率 输入/输出流控制 数据位数 停止位和齐偶校验
SerialPortsPort; try{ sPort setSerialPortParams(BaudRate Databits Stopbits Parity); //设置输入/输出控制流 sPort setFlowControlMode(FlowControlIn|FlowControlOut); }catch(){}
串口的读写
对串口读写之前需要先打开一个串口
CommPortIdentifierportId=CommPortIdentifier getPortIdentifier(PortName); try{ SerialPortsPort=(SerialPort)portId open( 串口所有者名称 超时等待时间); }catch(PortInUseExceptione){//如果端口被占用就抛出这个异常 (e getMessage()); } //用于对串口写数据 OutputStreamos=newBufferedOutputStream(sPort getOutputStream()); os write(intdata); //用于从串口读数据 InputStreamis=newBufferedInputStream(sPort getInputStream()); intreceivedData=is read();
读出来的是int型 你可以把它转换成需要的其他类型
这里要注意的是 由于Java语言没有无符号类型 即所有的类型都是带符号的 在由byte到int的时候应该尤其注意 因为如果byte的最高位是 则转成int类型时将用 来占位 这样 原本是 的byte类型的数变成int型就成了 这是很严重的问题 应该注意避免
串口通信的通用模式及其问题
终于唠叨完我最讨厌的基础知识了 下面开始我们本次的重点 串口应用的研究 由于向串口写数据很简单 所以这里我们只关注于从串口读数据的情况 通常 串口通信应用程序有两种模式 一种是实现SerialPortEventListener接口 监听各种串口事件并作相应处理;另一种就是建立一个独立的接收线程专门负责数据的接收 由于这两种方法在某些情况下存在很严重的问题(至于什么问题这里先卖个关子J) 所以我的实现是采用第三种方法来解决这个问题
事件监听模型
现在我们来看看事件监听模型是如何运作的
l 首先需要在你的端口控制类(例如SManager)加上 implements SerialPortEventListener
l 在初始化时加入如下代码
try{ SerialPortsPort addEventListener(SManager); }catch(TooManyListenersExceptione){ sPort close(); ( toomanylistenersadded ); } sPort notifyOnDataAvailable(true);
l 覆写public void serialEvent(SerialPortEvent e)方法 在其中对如下事件进行判断
BI 通讯中断
CD 载波检测
CTS 清除发送
DATA_AVAILABLE 有数据到达
DSR 数据设备准备好
FE 帧错误
OE 溢位错误
OUTPUT_BUFFER_EMPTY 输出缓冲区已清空
PE 奇偶校验错
RI 振铃指示
一般最常用的就是DATA_AVAILABLE 串口有数据到达事件 也就是说当串口有数据到达时 你可以在serialEvent中接收并处理所收到的数据 然而在我的实践中 遇到了一个十分严重的问题
首先描述一下我的实验 我的应用程序需要接收传感器节点从串口发回的查询数据 并将结果以图标的形式显示出来 串口设定的波特率是 川口每隔 毫秒返回一组数据(大约是 字节左右) 周期(即持续时间)为 秒 实测的时候在一个周期内应该返回 多个字节 而用事件监听模型我最多只能收到不到 字节 不知道这些字节都跑哪里去了 也不清楚到底丢失的是那部分数据 值得注意的是 这是我将serialEvent()中所有处理代码都注掉 只剩下打印代码所得的结果 数据丢失的如此严重是我所不能忍受的 于是我决定采用其他方法
串口读数据的线程模型
这个模型顾名思义 就是将接收数据的操作写成一个线程的形式:
(){ ThreadreadDataProcess=newThread(newRunnable(){ publicvoidrun(){ while(newData!= ){ try{ newData=is read(); System out println(newData); //其他的处理过程 ……… }catch(IOExceptionex){ System err println(ex); return; } } readDataProcess start(); }
在我的应用程序中 我将收到的数据打包放到一个缓存中 然后启动另一个线程从缓存中获取并处理数据 两个线程以生产者—消费者模式协同工作 数据的流向如下图所示
这样 我就圆满解决了丢数据问题 然而 没高兴多久我就又发现了一个同样严重的问题 虽然这回不再丢数据了 可是原本一个周期( 秒)之后 传感器节电已经停止传送数据了 但我的串口线程依然在努力的执行读串口操作 在控制台也可以看见收到的数据仍在不断的打印 原来 由于传感器节点发送的数据过快 而我的接收线程处理不过来 所以InputStream就先把已到达却还没处理的字节缓存起来 于是就导致了明明传感器节点已经不再发数据了 而控制台却还能看见数据不断打印这一奇怪的现象 唯一值得庆幸的是最后收到数据确实是 左右字节 没出现丢失现象 然而当处理完最后一个数据的时候已经快 分半钟了 这个时间远远大于节点运行周期 这一延迟对于一个实时的显示系统来说简直是灾难!
后来我想 是不是由于两个线程之间的同步和通信导致了数据接收缓慢呢?于是我在接收线程的代码中去掉了所有处理代码 仅保留打印收到数据的语句 结果依然如故 看来并不是线程间的通信阻碍了数据的接收速度 而是用线程模型导致了对于发送端数据发送速率过快的情况下的数据接收延迟 这里申明一点 就是对于数据发送速率不是如此快的情况下前面者两种模型应该还是好用的 只是特殊情况还是应该特殊处理
第三种方法
痛苦了许久(Boss天天催我L)之后 偶然的机会 我听说TinyOS中(又是开源的)有一部分是和我的应用程序类似的串口通信部分 于是我下载了它的 x版的Java代码部分 参考了它的处理方法 解决问题的方法说穿了其实很简单 就是从根源入手 根源不就是接收线程导致的吗 那好 我就干脆取消接收线程和作为中介的共享缓存 而直接在处理线程中调用串口读数据的方法来解决问题(什么 为什么不把处理线程也一并取消? 都取消应用程序界面不就锁死了吗?所以必须保留)于是程序变成了这样
publicbyte[]getPack(){ while(true){ //PacketLength为数据包长度 byte[]msgPack=newbyte[PacketLength]; for(inti= ;i<PacketLength;i++){ if((newData=is read())!= ){ msgPack[i]=(byte)newData; System out println(msgPack[i]); } } returnmsgPack; } }
在处理线程中调用这个方法返回所需要的数据序列并处理之 这样不但没有丢失数据的现象行出现 也没有数据接收延迟了 这里唯一需要注意的就是当串口停止发送数据或没有数据的时候is read()一直都返回 如果一旦在开始接收数据的时候发现 就不要理它 继续接收 直到收到真正的数据为止
结束语
lishixin/Article/program/Java/hx/201311/26605
② java串口通信数据丢失,怎么解决
解决办法:
1、将两台PC间波特率设置为一样的大小。
2、采取进距离传输,随着距离的版增加权,信息衰减率也便增加。
3、尽量采用低波特率传输,这样误码率会大大减少。
4、加入数据校验功能,在接收数据一方实现“奇偶校验法”等方法验证数据传输的完整性。
③ jsp,java串口通信的问题
import gnu.io.SerialPort;
import java.util.HashMap;
public class CommTest {
public static void main(String[] args) {
HashMap <String, Comparable> params = new HashMap <String, Comparable>();
params.put(SerialReader.PARAMS_PORT, "COM8"); // 端口名称
params.put(SerialReader.PARAMS_RATE, 9600); // 波特率
params.put(SerialReader.PARAMS_TIMEOUT, 1000); // 设备超时时间 1秒
params.put(SerialReader.PARAMS_DELAY, 200); // 端口数据准备时间 1秒
params.put(SerialReader.PARAMS_DATABITS, SerialPort.DATABITS_8); // 数据位
params.put(SerialReader.PARAMS_STOPBITS, SerialPort.STOPBITS_1); // 停止位
params.put(SerialReader.PARAMS_PARITY, SerialPort.PARITY_NONE); // 无奇偶校验
SerialReader sr = new SerialReader(params);
CommDataObserver bob = new CommDataObserver("bob");
CommDataObserver joe = new CommDataObserver("joe");
sr.addObserver(joe);
sr.addObserver(bob);
}
}
---------------- 2 -----------------
package serial;
import gnu.io.CommPort;
import gnu.io.CommPortIdentifier;
import gnu.io.NoSuchPortException;
import gnu.io.PortInUseException;
import gnu.io.SerialPort;
import gnu.io.SerialPortEvent;
import gnu.io.SerialPortEventListener;
import gnu.io.;
import java.io.IOException;
import java.io.InputStream;
import java.util.Enumeration;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Observable;
import java.util.TooManyListenersException;
/**
* 串口数据读取类,用于windows的串口数据读取
*
*/
public class SerialReader extends Observable implements Runnable, SerialPortEventListener {
static CommPortIdentifier portId;
int delayRead = 200;
int numBytes; // buffer中的实际数据字节数
private static byte[] readBuffer = new byte[4096]; // 4k的buffer空间,缓存串口读入的数据
static Enumeration portList;
InputStream inputStream;
SerialPort serialPort;
HashMap serialParams;
// 端口读入数据事件触发后,等待n毫秒后再读取,以便让数据一次性读完
public static final String PARAMS_DELAY = "delay read"; // 延时等待端口数据准备的时间
public static final String PARAMS_TIMEOUT = "timeout"; // 超时时间
public static final String PARAMS_PORT = "port name"; // 端口名称
public static final String PARAMS_DATABITS = "data bits"; // 数据位
public static final String PARAMS_STOPBITS = "stop bits"; // 停止位
public static final String PARAMS_PARITY = "parity"; // 奇偶校验
public static final String PARAMS_RATE = "rate"; // 波特率
/**
* 初始化端口操作的参数.
*
*
* @see
*/
public SerialReader(HashMap params) {
serialParams = params;
init();
}
private void init() {
try {
// 参数初始化
int timeout = Integer.parseInt(serialParams.get(PARAMS_TIMEOUT).toString());
int rate = Integer.parseInt(serialParams.get(PARAMS_RATE).toString());
int dataBits = Integer.parseInt(serialParams.get(PARAMS_DATABITS).toString());
int stopBits = Integer.parseInt(serialParams.get(PARAMS_STOPBITS).toString());
int parity = Integer.parseInt(serialParams.get(PARAMS_PARITY).toString());
delayRead = Integer.parseInt(serialParams.get(PARAMS_DELAY).toString());
String port = serialParams.get(PARAMS_PORT).toString();
// 打开端口
portId = CommPortIdentifier.getPortIdentifier(port);
serialPort = (SerialPort) portId.open("SerialReader", timeout);
inputStream = serialPort.getInputStream();
serialPort.addEventListener(this);
serialPort.notifyOnDataAvailable(true);
serialPort.setSerialPortParams(rate, dataBits, stopBits, parity);
} catch (PortInUseException e) {
System.out.println("端口已经被占用!");
e.printStackTrace();
} catch (TooManyListenersException e) {
System.out.println("端口监听者过多!");
e.printStackTrace();
} catch ( e) {
System.out.println("端口操作命令不支持!");
e.printStackTrace();
} catch (NoSuchPortException e) {
System.out.println("端口不存在!");
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
Thread readThread = new Thread(this);
readThread.start();
}
/**
* Method declaration
*
*
* @see
*/
public void run() {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
}
}
/**
* Method declaration
*
*
* @param event
*
* @see
*/
public void serialEvent(SerialPortEvent event) {
try {
// 等待1秒钟让串口把数据全部接收后在处理
Thread.sleep(delayRead);
System.out.print("serialEvent[" + event.getEventType() + "] ");
} catch (InterruptedException e) {
e.printStackTrace();
}
switch (event.getEventType()) {
case SerialPortEvent.BI: // 10
case SerialPortEvent.OE: // 7
case SerialPortEvent.FE: // 9
case SerialPortEvent.PE: // 8
case SerialPortEvent.CD: // 6
case SerialPortEvent.CTS: // 3
case SerialPortEvent.DSR: // 4
case SerialPortEvent.RI: // 5
case SerialPortEvent.OUTPUT_BUFFER_EMPTY: // 2
break;
case SerialPortEvent.DATA_AVAILABLE: // 1
try {
// 多次读取,将所有数据读入
// while (inputStream.available() > 0) {
// numBytes = inputStream.read(readBuffer);
// }
numBytes = inputStream.read(readBuffer);
changeMessage(readBuffer, numBytes);
} catch (IOException e) {
e.printStackTrace();
}
break;
}
}
// 通过observer pattern将收到的数据发送给observer
// 将buffer中的空字节删除后再发送更新消息,通知观察者
public void changeMessage(byte[] message, int length) {
setChanged();
byte[] temp = new byte[length];
System.array(message, 0, temp, 0, length);
// System.out.println("msg[" + numBytes + "]: [" + new String(temp) + "]");
notifyObservers(temp);
}
static void listPorts() {
Enumeration portEnum = CommPortIdentifier.getPortIdentifiers();
while (portEnum.hasMoreElements()) {
CommPortIdentifier portIdentifier = (CommPortIdentifier) portEnum.nextElement();
System.out.println(portIdentifier.getName() + " - "
+ getPortTypeName(portIdentifier.getPortType()));
}
}
static String getPortTypeName(int portType) {
switch (portType) {
case CommPortIdentifier.PORT_I2C:
return "I2C";
case CommPortIdentifier.PORT_PARALLEL:
return "Parallel";
case CommPortIdentifier.PORT_RAW:
return "Raw";
case CommPortIdentifier.PORT_RS485:
return "RS485";
case CommPortIdentifier.PORT_SERIAL:
return "Serial";
default:
return "unknown type";
}
}
/**
* @return A HashSet containing the CommPortIdentifier for all serial ports that are not
* currently being used.
*/
public static HashSet <CommPortIdentifier> getAvailableSerialPorts() {
HashSet <CommPortIdentifier> h = new HashSet <CommPortIdentifier>();
Enumeration thePorts = CommPortIdentifier.getPortIdentifiers();
while (thePorts.hasMoreElements()) {
CommPortIdentifier com = (CommPortIdentifier) thePorts.nextElement();
switch (com.getPortType()) {
case CommPortIdentifier.PORT_SERIAL:
try {
CommPort thePort = com.open("CommUtil", 50);
thePort.close();
h.add(com);
} catch (PortInUseException e) {
System.out.println("Port, " + com.getName() + ", is in use.");
} catch (Exception e) {
System.out.println("Failed to open port " + com.getName() + e);
}
}
}
return h;
}
}
---------- 3 -----------------
package serial;
import java.util.Observable;
import java.util.Observer;
class CommDataObserver implements Observer {
String name;
public CommDataObserver(String name) {
this.name = name;
}
public void update(Observable o, Object arg) {
System.out.println("[" + name + "] GetMessage:\n [" + new String((byte[]) arg) + "]");
}
}
④ java串口通信中怎样以十六进制数发送
做串口通讯的时候基本都是通过流读取、输出。那么在java开发中发送数据的时候使用OutputStream,而其write()的参数是字节数组、int整形。如果使用字节数组发送的时候,通常可以直接写成out.write("1234".getBytes())。这样一来单片机读到的数据则是31 32 33 34。但是在串口发送的时候先把16进制字符串转化为byte数组在发送出来,则是发送什么读取到的就是什么。使用:out.write(HexString2Bytes("1234"));那么读取到的还是1234。16进制字符串转化为byte数组的方法为:
public static byte[] HexString2Bytes(String src) {
if (null == src || 0 == src.length()) {
return null;
}
byte[] ret = new byte[src.length() / 2];
byte[] tmp = src.getBytes();
for (int i = 0; i < (tmp.length / 2); i++) {
ret[i] = uniteBytes(tmp[i * 2], tmp[i * 2 + 1]);
}
return ret;
}
在用java做串口开发的时候建议使用开源的Rxtx做。效率、使用方法都要优。使用sun开源的comm个人觉得不是很便利。rxtx网上有开源实例。可以根据自己个需求进行加以修饰利用。
⑤ Java串口通信总结
最近在研究一个东西要用到串口的读写 通过读取串口 获取一个指令 然后根据该指令通过配置文件获取其他的信息再通过串口 进行做下一步的一系列操作
java读写串口要用到的是javax扩展类库javam 它是一系列的标准 该类库在sun的官网上只提供linux版本 由于我所应用的平台是win 所以找了个win 的实现 在此过程中遇到了一系列的问题 后来终于解决问题并完成了通过读写串口进行通信的功能 在此对其java读写串口的情况做个简要说明
首先下载javam包 然后将其解压 解压后需要做的就是配置串口通信相关东西 下面是自己使用的时候的配置
把m properties文件拷贝到Java运行时环境的lib目录中 即
C:Program FilesJavajdk _ libm properties
C:Program FilesJavajdk _ jrelibm properties
把win dll拷贝到C:windowssystem 和 C:Program FilesJavajdk _ jrein下
把m jar放到Java运行时环境的lib目录中 即C:Program FilesJavajdk _ libm jar
在 环境变量 的CLASSPATH中添加m jar 如 %JAVA_HOME%libm jar;
然后通过的API来实现串口的读写 其实API相当简单 如下代码
Java代码
CommPortIdentifier serialPortId = CommPortIdentifier getPortIdentifier( );
SerialPort port = (SerialPort) serialPortId open( Read );//打开 串口 其中 参数是用来设置打开串口的超时时间
port setSerialPortParams( );//设置 的波特率 数据位 停止位 校验方式等
//从串口中得到输入输出流了
OutputStream out = port getOutputStream();
out write(buffer);
out flush();
InputStream in = port getInputStream();
in read(data);//data是一个byte[]
CommPortIdentifier serialPortId = CommPortIdentifier getPortIdentifier( ); SerialPort port = (SerialPort) serialPortId open( Read );//打开 串口 其中 参数是用来设置打开串口的超时时间 port setSerialPortParams( );//设置 的波特率 数据位 停止位 校验方式等 //从串口中得到输入输出流了 OutputStream out = port getOutputStream(); out write(buffer); out flush(); InputStream in = port getInputStream(); in read(data);//data是一个byte[]
lishixin/Article/program/Java/hx/201311/26266