导航:首页 > 编程语言 > javathreadqueue

javathreadqueue

发布时间:2023-11-26 03:41:17

java 如何实现一个线程安全的队列

以下是两个线程:

import java.util.*;

public class Thread_List_Operation {
//假设有这么一个队列
static List list = new LinkedList();

public static void main(String[] args) {
Thread t;
t = new Thread(new T1());
t.start();
t = new Thread(new T2());
t.start();

}

}

//线程T1,用来给list添加新元素
class T1 implements Runnable{

void getElemt(Object o){
Thread_List_Operation.list.add(o);
System.out.println(Thread.currentThread().getName() + "为队列添加了一个元素");
}
@Override
public void run() {
for (int i = 0; i < 10; i++) {
getElemt(new Integer(1));
}

}

}

//线程T2,用来给list添加新元素
class T2 implements Runnable{

void getElemt(Object o){
Thread_List_Operation.list.add(o);
System.out.println(Thread.currentThread().getName() + "为队列添加了一个元素");
}
@Override
public void run() {
for (int i = 0; i < 10; i++) {
getElemt(new Integer(1));
}

}

}

//结果(乱序)
Thread-0为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-1为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-0为队列添加了一个元素
Thread-0为队列添加了一个元素

㈡ java线程组,线程池,线程队列分别是什么有什么区别

你好,我可以给你详细解释一下:
线程组表示一个线程的集合。此外,线程组也可以包含其他线程组。线程组构成一棵树,在树中,除了初始线程组外,每个线程组都有一个父线程组。
允许线程访问有关自己的线程组的信息,但是不允许它访问有关其线程组的父线程组或其他任何线程组的信息。
线程池:我们可以把并发执行的任务传递给一个线程池,来替代为每个并发执行的任务都启动一个新的线程。只要池里有空闲的线程,任务就会分配给一个线程执行。在线程池的内部,任务被插入一个阻塞队列(Blocking Queue ),线程池里的线程会去取这个队列里的任务。当一个新任务插入队列时,一个空闲线程就会成功的从队列中取出任务并且执行它。

线程池经常应用在多线程服务器上。每个通过网络到达服务器的连接都被包装成一个任务并且传递给线程池。线程池的线程会并发的处理连接上的请求。以后会再深入有关 Java 实现多线程服务器的细节。
线程队列:是指线程处于拥塞的时候形成的调度队列
排队有三种通用策略:
直接提交。工作队列的默认选项是 SynchronousQueue,它将任务直接提交给线程而不保持它们。在此,如果不存在可用于立即运行任务的线程,则试图把任务加入队列将失败,因此会构造一个新的线程。此策略可以避免在处理可能具有内部依赖性的请求集时出现锁。直接提交通常要求无界 maximumPoolSizes 以避免拒绝新提交的任务。当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
无界队列。使用无界队列(例如,不具有预定义容量的 LinkedBlockingQueue)将导致在所有corePoolSize 线程都忙时新任务在队列中等待。这样,创建的线程就不会超过 corePoolSize。(因此,maximumPoolSize的值也就无效了。)当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
有界队列。当使用有限的 maximumPoolSizes时,有界队列(如 ArrayBlockingQueue)有助于防止资源耗尽,但是可能较难调整和控制。队列大小和最大池大小可能需要相互折衷:使用大型队列和小型池可以最大限度地降低 CPU 使用率、操作系统资源和上下文切换开销,但是可能导致人工降低吞吐量。如果任务频繁阻塞(例如,如果它们是 I/O边界),则系统可能为超过您许可的更多线程安排时间。使用小型队列通常要求较大的池大小,CPU使用率较高,但是可能遇到不可接受的调度开销,这样也会降低吞吐量。

㈢ java 线程池 工作队列是如何工作的

使用线程池的好处

1、降低资源消耗

可以重复利用已创建的线程降低线程创建和销毁造成的消耗。

2、提高响应速度

当任务到达时,任务可以不需要等到线程创建就能立即执行。

3、提高线程的可管理性

线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控

线程池的工作原理

首先我们看下当一个新的任务提交到线程池之后,线程池是如何处理的

1、线程池判断核心线程池里的线程是否都在执行任务。如果不是,则创建一个新的工作线程来执行任务。如果核心线程池里的线程都在执行任务,则执行第二步。

2、线程池判断工作队列是否已经满。如果工作队列没有满,则将新提交的任务存储在这个工作队列里进行等待。如果工作队列满了,则执行第三步

3、线程池判断线程池的线程是否都处于工作状态。如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务

线程池饱和策略

这里提到了线程池的饱和策略,那我们就简单介绍下有哪些饱和策略:

AbortPolicy

为Java线程池默认的阻塞策略,不执行此任务,而且直接抛出一个运行时异常,切记ThreadPoolExecutor.execute需要try catch,否则程序会直接退出。

DiscardPolicy

直接抛弃,任务不执行,空方法

DiscardOldestPolicy

从队列里面抛弃head的一个任务,并再次execute 此task。

CallerRunsPolicy

在调用execute的线程里面执行此command,会阻塞入口

用户自定义拒绝策略(最常用)

实现RejectedExecutionHandler,并自己定义策略模式

下我们以ThreadPoolExecutor为例展示下线程池的工作流程图

3.jpg

关键方法源码分析

我们看看核心方法添加到线程池方法execute的源码如下:

// //Executes the given task sometime in the future. The task //may execute in a new thread or in an existing pooled thread. // // If the task cannot be submitted for execution, either because this // executor has been shutdown or because its capacity has been reached, // the task is handled by the current {@code RejectedExecutionHandler}. // // @param command the task to execute // @throws RejectedExecutionException at discretion of // {@code RejectedExecutionHandler}, if the task // cannot be accepted for execution // @throws NullPointerException if {@code command} is null // public void execute(Runnable command) { if (command == null) throw new NullPointerException(); // // Proceed in 3 steps: // // 1. If fewer than corePoolSize threads are running, try to // start a new thread with the given command as its first // task. The call to addWorker atomically checks runState and // workerCount, and so prevents false alarms that would add // threads when it shouldn't, by returning false. // 翻译如下: // 判断当前的线程数是否小于corePoolSize如果是,使用入参任务通过addWord方法创建一个新的线程, // 如果能完成新线程创建exexute方法结束,成功提交任务 // 2. If a task can be successfully queued, then we still need // to double-check whether we should have added a thread // (because existing ones died since last checking) or that // the pool shut down since entry into this method. So we // recheck state and if necessary roll back the enqueuing if // stopped, or start a new thread if there are none. // 翻译如下: // 在第一步没有完成任务提交;状态为运行并且能否成功加入任务到工作队列后,再进行一次check,如果状态 // 在任务加入队列后变为了非运行(有可能是在执行到这里线程池shutdown了),非运行状态下当然是需要 // reject;然后再判断当前线程数是否为0(有可能这个时候线程数变为了0),如是,新增一个线程; // 3. If we cannot queue task, then we try to add a new // thread. If it fails, we know we are shut down or saturated // and so reject the task. // 翻译如下: // 如果不能加入任务到工作队列,将尝试使用任务新增一个线程,如果失败,则是线程池已经shutdown或者线程池 // 已经达到饱和状态,所以reject这个他任务 // int c = ctl.get(); // 工作线程数小于核心线程数 if (workerCountOf(c) < corePoolSize) { // 直接启动新线程,true表示会再次检查workerCount是否小于corePoolSize if (addWorker(command, true)) return; c = ctl.get(); } // 如果工作线程数大于等于核心线程数 // 线程的的状态未RUNNING并且队列notfull if (isRunning(c) && workQueue.offer(command)) { // 再次检查线程的运行状态,如果不是RUNNING直接从队列中移除 int recheck = ctl.get(); if (! isRunning(recheck) && remove(command)) // 移除成功,拒绝该非运行的任务 reject(command); else if (workerCountOf(recheck) == 0) // 防止了SHUTDOWN状态下没有活动线程了,但是队列里还有任务没执行这种特殊情况。 // 添加一个null任务是因为SHUTDOWN状态下,线程池不再接受新任务 addWorker(null, false); } // 如果队列满了或者是非运行的任务都拒绝执行 else if (!addWorker(command, false)) reject(command); }

㈣ 在JAVA中线程到底起到什么作用

这是javaeye上非常经典的关于线程的帖子,写的非常通俗易懂的,适合任何读计算机的同学.
线程同步

我们可以在计算机上运行各种计算机软件程序。每一个运行的程序可能包括多个独立运行的线程(Thread)。
线程(Thread)是一份独立运行的程序,有自己专用的运行栈。线程有可能和其他线程共享一些资源,比如,内存,文件数据库等。
当多个线程同时读写同一份共享资源的时候,可能会引起冲突。这时候,我们需要引入线程“同步”机制,即各位线程之间要有个先来后到,不能一窝蜂挤上去抢作一团。
同步这个词是从英文synchronize(使同时发生)翻译过来的。我也不明白为什么要用这个很容易引起误解的词。既然大家都这么用,咱们也就只好这么将就。
线程同步的真实意思和字面意思恰好相反。线程同步的真实意思,其实是“排队”:几个线程之间要排队,一个一个对共享资源进行操作,而不是同时进行操作。

因此,关于线程同步,需要牢牢记住的第一点是:线程同步就是线程排队。同步就是排队。线程同步的目的就是避免线程“同步”执行。这可真是个无聊的绕口令。
关于线程同步,需要牢牢记住的第二点是 “共享”这两个字。只有共享资源的读写访问才需要同步。如果不是共享资源,那么就根本没有同步的必要。
关于线程同步,需要牢牢记住的第三点是,只有“变量”才需要同步访问。如果共享的资源是固定不变的,那么就相当于“常量”,线程同时读取常量也不需要同步。至少一个线程修改共享资源,这样的情况下,线程之间就需要同步。
关于线程同步,需要牢牢记住的第四点是:多个线程访问共享资源的代码有可能是同一份代码,也有可能是不同的代码;无论是否执行同一份代码,只要这些线程的代码访问同一份可变的共享资源,这些线程之间就需要同步。

为了加深理解,下面举几个例子。
有两个采购员,他们的工作内容是相同的,都是遵循如下的步骤:
(1)到市场上去,寻找并购买有潜力的样品。
(2)回到公司,写报告。
这两个人的工作内容虽然一样,他们都需要购买样品,他们可能买到同样种类的样品,但是他们绝对不会购买到同一件样品,他们之间没有任何共享资源。所以,他们可以各自进行自己的工作,互不干扰。
这两个采购员就相当于两个线程;两个采购员遵循相同的工作步骤,相当于这两个线程执行同一段代码。

下面给这两个采购员增加一个工作步骤。采购员需要根据公司的“布告栏”上面公布的信息,安排自己的工作计划。
这两个采购员有可能同时走到布告栏的前面,同时观看布告栏上的信息。这一点问题都没有。因为布告栏是只读的,这两个采购员谁都不会去修改布告栏上写的信息。

下面增加一个角色。一个办公室行政人员这个时候,也走到了布告栏前面,准备修改布告栏上的信息。
如果行政人员先到达布告栏,并且正在修改布告栏的内容。两个采购员这个时候,恰好也到了。这两个采购员就必须等待行政人员完成修改之后,才能观看修改后的信息。
如果行政人员到达的时候,两个采购员已经在观看布告栏了。那么行政人员需要等待两个采购员把当前信息记录下来之后,才能够写上新的信息。
上述这两种情况,行政人员和采购员对布告栏的访问就需要进行同步。因为其中一个线程(行政人员)修改了共享资源(布告栏)。而且我们可以看到,行政人员的工作流程和采购员的工作流程(执行代码)完全不同,但是由于他们访问了同一份可变共享资源(布告栏),所以他们之间需要同步。

同步锁

前面讲了为什么要线程同步,下面我们就来看如何才能线程同步。
线程同步的基本实现思路还是比较容易理解的。我们可以给共享资源加一把锁,这把锁只有一把钥匙。哪个线程获取了这把钥匙,才有权利访问该共享资源。
生活中,我们也可能会遇到这样的例子。一些超市的外面提供了一些自动储物箱。每个储物箱都有一把锁,一把钥匙。人们可以使用那些带有钥匙的储物箱,把东西放到储物箱里面,把储物箱锁上,然后把钥匙拿走。这样,该储物箱就被锁住了,其他人不能再访问这个储物箱。(当然,真实的储物箱钥匙是可以被人拿走复制的,所以不要把贵重物品放在超市的储物箱里面。于是很多超市都采用了电子密码锁。)
线程同步锁这个模型看起来很直观。但是,还有一个严峻的问题没有解决,这个同步锁应该加在哪里?
当然是加在共享资源上了。反应快的读者一定会抢先回答。
没错,如果可能,我们当然尽量把同步锁加在共享资源上。一些比较完善的共享资源,比如,文件系统,数据库系统等,自身都提供了比较完善的同步锁机制。我们不用另外给这些资源加锁,这些资源自己就有锁。
但是,大部分情况下,我们在代码中访问的共享资源都是比较简单的共享对象。这些对象里面没有地方让我们加锁。
读者可能会提出建议:为什么不在每一个对象内部都增加一个新的区域,专门用来加锁呢?这种设计理论上当然也是可行的。问题在于,线程同步的情况并不是很普遍。如果因为这小概率事件,在所有对象内部都开辟一块锁空间,将会带来极大的空间浪费。得不偿失。
于是,现代的编程语言的设计思路都是把同步锁加在代码段上。确切的说,是把同步锁加在“访问共享资源的代码段”上。这一点一定要记住,同步锁是加在代码段上的。
同步锁加在代码段上,就很好地解决了上述的空间浪费问题。但是却增加了模型的复杂度,也增加了我们的理解难度。
现在我们就来仔细分析“同步锁加在代码段上”的线程同步模型。
首先,我们已经解决了同步锁加在哪里的问题。我们已经确定,同步锁不是加在共享资源上,而是加在访问共享资源的代码段上。
其次,我们要解决的问题是,我们应该在代码段上加什么样的锁。这个问题是重点中的重点。这是我们尤其要注意的问题:访问同一份共享资源的不同代码段,应该加上同一个同步锁;如果加的是不同的同步锁,那么根本就起不到同步的作用,没有任何意义。
这就是说,同步锁本身也一定是多个线程之间的共享对象。

Java语言的synchronized关键字

为了加深理解,举几个代码段同步的例子。
不同语言的同步锁模型都是一样的。只是表达方式有些不同。这里我们以当前最流行的Java语言为例。Java语言里面用synchronized关键字给代码段加锁。整个语法形式表现为
synchronized(同步锁) {
// 访问共享资源,需要同步的代码段
}

这里尤其要注意的就是,同步锁本身一定要是共享的对象。

… f1() {

Object lock1 = new Object(); // 产生一个同步锁

synchronized(lock1){
// 代码段 A
// 访问共享资源 resource1
// 需要同步
}
}

上面这段代码没有任何意义。因为那个同步锁是在函数体内部产生的。每个线程调用这段代码的时候,都会产生一个新的同步锁。那么多个线程之间,使用的是不同的同步锁。根本达不到同步的目的。
同步代码一定要写成如下的形式,才有意义。

public static final Object lock1 = new Object();

… f1() {

synchronized(lock1){ // lock1 是公用同步锁
// 代码段 A
// 访问共享资源 resource1
// 需要同步
}

你不一定要把同步锁声明为static或者public,但是你一定要保证相关的同步代码之间,一定要使用同一个同步锁。
讲到这里,你一定会好奇,这个同步锁到底是个什么东西。为什么随便声明一个Object对象,就可以作为同步锁?
在Java里面,同步锁的概念就是这样的。任何一个Object Reference都可以作为同步锁。我们可以把Object Reference理解为对象在内存分配系统中的内存地址。因此,要保证同步代码段之间使用的是同一个同步锁,我们就要保证这些同步代码段的synchronized关键字使用的是同一个Object Reference,同一个内存地址。这也是为什么我在前面的代码中声明lock1的时候,使用了final关键字,这就是为了保证lock1的Object Reference在整个系统运行过程中都保持不变。
一些求知欲强的读者可能想要继续深入了解synchronzied(同步锁)的实际运行机制。Java虚拟机规范中(你可以在google用“JVM Spec”等关键字进行搜索),有对synchronized关键字的详细解释。synchronized会编译成 monitor enter, … monitor exit之类的指令对。Monitor就是实际上的同步锁。每一个Object Reference在概念上都对应一个monitor。
这些实现细节问题,并不是理解同步锁模型的关键。我们继续看几个例子,加深对同步锁模型的理解。

public static final Object lock1 = new Object();

… f1() {

synchronized(lock1){ // lock1 是公用同步锁
// 代码段 A
// 访问共享资源 resource1
// 需要同步
}
}

… f2() {

synchronized(lock1){ // lock1 是公用同步锁
// 代码段 B
// 访问共享资源 resource1
// 需要同步
}
}

上述的代码中,代码段A和代码段B就是同步的。因为它们使用的是同一个同步锁lock1。
如果有10个线程同时执行代码段A,同时还有20个线程同时执行代码段B,那么这30个线程之间都是要进行同步的。
这30个线程都要竞争一个同步锁lock1。同一时刻,只有一个线程能够获得lock1的所有权,只有一个线程可以执行代码段A或者代码段B。其他竞争失败的线程只能暂停运行,进入到该同步锁的就绪(Ready)队列。
每一个同步锁下面都挂了几个线程队列,包括就绪(Ready)队列,待召(Waiting)队列等。比如,lock1对应的就绪队列就可以叫做lock1 - ready queue。每个队列里面都可能有多个暂停运行的线程。
注意,竞争同步锁失败的线程进入的是该同步锁的就绪(Ready)队列,而不是后面要讲述的待召队列(Waiting Queue,也可以翻译为等待队列)。就绪队列里面的线程总是时刻准备着竞争同步锁,时刻准备着运行。而待召队列里面的线程则只能一直等待,直到等到某个信号的通知之后,才能够转移到就绪队列中,准备运行。
成功获取同步锁的线程,执行完同步代码段之后,会释放同步锁。该同步锁的就绪队列中的其他线程就继续下一轮同步锁的竞争。成功者就可以继续运行,失败者还是要乖乖地待在就绪队列中。
因此,线程同步是非常耗费资源的一种操作。我们要尽量控制线程同步的代码段范围。同步的代码段范围越小越好。我们用一个名词“同步粒度”来表示同步代码段的范围。
同步粒度
在Java语言里面,我们可以直接把synchronized关键字直接加在函数的定义上。
比如。
… synchronized … f1() {
// f1 代码段
}

这段代码就等价于
… f1() {
synchronized(this){ // 同步锁就是对象本身
// f1 代码段
}
}

同样的原则适用于静态(static)函数
比如。
… static synchronized … f1() {
// f1 代码段
}

这段代码就等价于
…static … f1() {
synchronized(Class.forName(…)){ // 同步锁是类定义本身
// f1 代码段
}
}

但是,我们要尽量避免这种直接把synchronized加在函数定义上的偷懒做法。因为我们要控制同步粒度。同步的代码段越小越好。synchronized控制的范围越小越好。
我们不仅要在缩小同步代码段的长度上下功夫,我们同时还要注意细分同步锁。
比如,下面的代码

public static final Object lock1 = new Object();

… f1() {

synchronized(lock1){ // lock1 是公用同步锁
// 代码段 A
// 访问共享资源 resource1
// 需要同步
}
}

… f2() {

synchronized(lock1){ // lock1 是公用同步锁
// 代码段 B
// 访问共享资源 resource1
// 需要同步
}
}

… f3() {

synchronized(lock1){ // lock1 是公用同步锁
// 代码段 C
// 访问共享资源 resource2
// 需要同步
}
}

… f4() {

synchronized(lock1){ // lock1 是公用同步锁
// 代码段 D
// 访问共享资源 resource2
// 需要同步
}
}

上述的4段同步代码,使用同一个同步锁lock1。所有调用4段代码中任何一段代码的线程,都需要竞争同一个同步锁lock1。
我们仔细分析一下,发现这是没有必要的。
因为f1()的代码段A和f2()的代码段B访问的共享资源是resource1,f3()的代码段C和f4()的代码段D访问的共享资源是resource2,它们没有必要都竞争同一个同步锁lock1。我们可以增加一个同步锁lock2。f3()和f4()的代码可以修改为:
public static final Object lock2 = new Object();

… f3() {

synchronized(lock2){ // lock2 是公用同步锁
// 代码段 C
// 访问共享资源 resource2
// 需要同步
}
}

… f4() {

synchronized(lock2){ // lock2 是公用同步锁
// 代码段 D
// 访问共享资源 resource2
// 需要同步
}
}

这样,f1()和f2()就会竞争lock1,而f3()和f4()就会竞争lock2。这样,分开来分别竞争两个锁,就可以大大较少同步锁竞争的概率,从而减少系统的开销。

信号量

同步锁模型只是最简单的同步模型。同一时刻,只有一个线程能够运行同步代码。
有的时候,我们希望处理更加复杂的同步模型,比如生产者/消费者模型、读写同步模型等。这种情况下,同步锁模型就不够用了。我们需要一个新的模型。这就是我们要讲述的信号量模型。
信号量模型的工作方式如下:线程在运行的过程中,可以主动停下来,等待某个信号量的通知;这时候,该线程就进入到该信号量的待召(Waiting)队列当中;等到通知之后,再继续运行。
很多语言里面,同步锁都由专门的对象表示,对象名通常叫Monitor。
同样,在很多语言中,信号量通常也有专门的对象名来表示,比如,Mutex,Semphore。
信号量模型要比同步锁模型复杂许多。一些系统中,信号量甚至可以跨进程进行同步。另外一些信号量甚至还有计数功能,能够控制同时运行的线程数。
我们没有必要考虑那么复杂的模型。所有那些复杂的模型,都是最基本的模型衍生出来的。只要掌握了最基本的信号量模型——“等待/通知”模型,复杂模型也就迎刃而解了。
我们还是以Java语言为例。Java语言里面的同步锁和信号量概念都非常模糊,没有专门的对象名词来表示同步锁和信号量,只有两个同步锁相关的关键字——volatile和synchronized。
这种模糊虽然导致概念不清,但同时也避免了Monitor、Mutex、Semphore等名词带来的种种误解。我们不必执着于名词之争,可以专注于理解实际的运行原理。
在Java语言里面,任何一个Object Reference都可以作为同步锁。同样的道理,任何一个Object Reference也可以作为信号量。
Object对象的wait()方法就是等待通知,Object对象的notify()方法就是发出通知。
具体调用方法为
(1)等待某个信号量的通知
public static final Object signal = new Object();

… f1() {
synchronized(singal) { // 首先我们要获取这个信号量。这个信号量同时也是一个同步锁

// 只有成功获取了signal这个信号量兼同步锁之后,我们才可能进入这段代码
signal.wait(); // 这里要放弃信号量。本线程要进入signal信号量的待召(Waiting)队列

// 可怜。辛辛苦苦争取到手的信号量,就这么被放弃了

// 等到通知之后,从待召(Waiting)队列转到就绪(Ready)队列里面
// 转到了就绪队列中,离CPU核心近了一步,就有机会继续执行下面的代码了。
// 仍然需要把signal同步锁竞争到手,才能够真正继续执行下面的代码。命苦啊。

}
}

需要注意的是,上述代码中的signal.wait()的意思。signal.wait()很容易导致误解。signal.wait()的意思并不是说,signal开始wait,而是说,运行这段代码的当前线程开始wait这个signal对象,即进入signal对象的待召(Waiting)队列。

(2)发出某个信号量的通知
… f2() {
synchronized(singal) { // 首先,我们同样要获取这个信号量。同时也是一个同步锁。

// 只有成功获取了signal这个信号量兼同步锁之后,我们才可能进入这段代码
signal.notify(); // 这里,我们通知signal的待召队列中的某个线程。

// 如果某个线程等到了这个通知,那个线程就会转到就绪队列中
// 但是本线程仍然继续拥有signal这个同步锁,本线程仍然继续执行
// 嘿嘿,虽然本线程好心通知其他线程,
// 但是,本线程可没有那么高风亮节,放弃到手的同步锁
// 本线程继续执行下面的代码

}
}

需要注意的是,signal.notify()的意思。signal.notify()并不是通知signal这个对象本身。而是通知正在等待signal信号量的其他线程。

以上就是Object的wait()和notify()的基本用法。
实际上,wait()还可以定义等待时间,当线程在某信号量的待召队列中,等到足够长的时间,就会等无可等,无需再等,自己就从待召队列转移到就绪队列中了。
另外,还有一个notifyAll()方法,表示通知待召队列里面的所有线程。
这些细节问题,并不对大局产生影响。

绿色线程

绿色线程(Green Thread)是一个相对于操作系统线程(Native Thread)的概念。
操作系统线程(Native Thread)的意思就是,程序里面的线程会真正映射到操作系统的线程,线程的运行和调度都是由操作系统控制的
绿色线程(Green Thread)的意思是,程序里面的线程不会真正映射到操作系统的线程,而是由语言运行平台自身来调度。
当前版本的Python语言的线程就可以映射到操作系统线程。当前版本的Ruby语言的线程就属于绿色线程,无法映射到操作系统的线程,因此Ruby语言的线程的运行速度比较慢。
难道说,绿色线程要比操作系统线程要慢吗?当然不是这样。事实上,情况可能正好相反。Ruby是一个特殊的例子。线程调度器并不是很成熟。
目前,线程的流行实现模型就是绿色线程。比如,stackless Python,就引入了更加轻量的绿色线程概念。在线程并发编程方面,无论是运行速度还是并发负载上,都优于Python。
另一个更著名的例子就是ErLang(爱立信公司开发的一种开源语言)。
ErLang的绿色线程概念非常彻底。ErLang的线程不叫Thread,而是叫做Process。这很容易和进程混淆起来。这里要注意区分一下。
ErLang Process之间根本就不需要同步。因为ErLang语言的所有变量都是final的,不允许变量的值发生任何变化。因此根本就不需要同步。
final变量的另一个好处就是,对象之间不可能出现交叉引用,不可能构成一种环状的关联,对象之间的关联都是单向的,树状的。因此,内存垃圾回收的算法效率也非常高。这就让ErLang能够达到Soft Real Time(软实时)的效果。这对于一门支持内存垃圾回收的语言来说,可不是一件容易的事情。

阅读全文

与javathreadqueue相关的资料

热点内容
会议上文件读好后要说什么 浏览:783
安装压缩文件office 浏览:417
2014年网络营销大事件 浏览:186
首页全屏安装代码 浏览:39
党规党纪指的哪些文件 浏览:995
windows编程图形界面用什么设置 浏览:266
deb文件安装路径 浏览:540
飞鸽传送提示文件名太长 浏览:486
日服文件名 浏览:648
宏程序和编程哪个好学 浏览:965
怎么打开微信中的文件怎么打开方式打开方式 浏览:98
wordpressgbk版本 浏览:328
怎么看网络的带宽多少兆 浏览:930
word文档粘贴出现文件包 浏览:673
u盘文件传输 浏览:593
飞行棋教程视频 浏览:629
程序员下载网站 浏览:303
苹果5为什么不显示4g网络 浏览:741
怎么做好互联网公司的微信公众号 浏览:135
ipad与iphone取消同步 浏览:697

友情链接