㈠ 51单片机和DS18B20温度传感器、LCD1602液晶显示,NRF24L01无线传输模块 的无线温度监测系统的收发程序
/******************************无线温度发送***********************/
#include <reg52.h>
#include <intrins.h>
#define uint unsigned int
#define uchar unsigned char
#define TX_ADDR_WITDH 5//发送地址宽度设置为5个字节
#define RX_ADDR_WITDH 5
#define TX_DATA_WITDH 5
#define RX_DATA_WITDH 5
/******************************************************************
// nRF24L01指令格式:
*******************************************************************/
#define R_REGISTER 0x00 // 读寄存器
#define W_REGISTER 0x20 // 写寄存器
#define R_RX_PLOAD 0x61 // 读RX FIFO有效数据,1-32字节,当读数据完成后,数据被清除,应用于接收模式
#define W_TX_PLOAD 0xA0 // 写TX FIFO有效数据,1-32字节,写操作从字节0开始,应用于发射模式
#define FLUSH_TX 0xE1 // 清除TX FIFO寄存器,应用于发射模式
#define FLUSH_RX 0xE2 // 清除RX FIFO寄存器,应用于接收模式
#define REUSE_TX_PL 0xE3 // 重新使用上一包有效数据,当CE为高过程中,数据包被不断的重新发射
#define NOP 0xFF // 空操作,可以用来读状态寄存器
/******************************************************************
// nRF24L01寄存器地址
*******************************************************************/
#define CONFIG 0x00 // 配置寄存器
#define EN_AA 0x01 // “自动应答”功能寄存
#define EN_RX_ADDR 0x02 // 接收通道使能寄存器
#define SETUP_AW 0x03 // 地址宽度设置寄存器
#define SETUP_RETR 0x04 // 自动重发设置寄存器
#define RF_CH 0x05 // 射频通道频率设置寄存器
#define RF_SETUP 0x06 // 射频设置寄存器
#define STATUS 0x07 // 状态寄存器
#define OBSERVE_TX 0x08 // 发送检测寄存器
#define CD 0x09 // 载波检测寄存器
#define RX_ADDR_P0 0x0A // 数据通道0接收地址寄存器
#define RX_ADDR_P1 0x0B // 数据通道1接收地址寄存器
#define RX_ADDR_P2 0x0C // 数据通道2接收地址寄存器
#define RX_ADDR_P3 0x0D // 数据通道3接收地址寄存器
#define RX_ADDR_P4 0x0E // 数据通道4接收地址寄存器
#define RX_ADDR_P5 0x0F // 数据通道5接收地址寄存器
#define TX_ADDR 0x10 // 发送地址寄存器
#define RX_PW_P0 0x11 // 数据通道0有效数据宽度设置寄存器
#define RX_PW_P1 0x12 // 数据通道1有效数据宽度设置寄存器
#define RX_PW_P2 0x13 // 数据通道2有效数据宽度设置寄存器
#define RX_PW_P3 0x14 // 数据通道3有效数据宽度设置寄存器
#define RX_PW_P4 0x15 // 数据通道4有效数据宽度设置寄存器
#define RX_PW_P5 0x16 // 数据通道5有效数据宽度设置寄存器
#define FIFO_STATUS 0x17 // FIFO状态寄存器
//*********************************************************************************
uchar sta; // 状态变量
#define RX_DR (sta & 0x40) // 接收成功中断标志
#define TX_DS (sta & 0x20) // 发射成功中断标志
#define MAX_RT (sta & 0x10) // 重发溢出中断标志
sbit CE=P1^5;
sbit IRQ=P1^0;
sbit CSN=P1^4;
sbit MOSI=P1^2;
sbit MISO=P1^1;
sbit SCK=P1^3;
//sbit key=P1^0;
sbit LED=P0^0;
sbit DQ=P1^6;
uchar code TX_Addr[]={0x34,0x43,0x10,0x10,0x01};
//uchar code TX_Buffer[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x00};
uchar RX_Buffer[RX_DATA_WITDH];
uchar Temp_Value[]={0x00,0x00};
uchar Temp=0;
uchar Display_Digit[]={0,0,0,0};
bit DS18B20_IS_OK=1;
uchar code df_tab[]={0,1,1,2,3,3,4,4,5,6,6,7,8,8,9,9};//decimal fraction
void _delay_tus(uint x)
{
while(--x);
}
void _delay_us(uint x)
{
uint i,j;
for (j=0;j<x;j++)
for (i=0;i<12;i++);
}
void _delay_ms(uint x)
{
uint i,j;
for (j=0;j<x;j++)
for (i=0;i<120;i++);
}
/**************************************************/
/*函数功能:DS18B20初始化*/
/*入口参数:无 */
/*出口函数:status */
/**************************************************/
uchar DS18B20_Init(void)
{
uchar status;
DQ=1;
_delay_tus(10);
DQ=0;
_delay_tus(90);
DQ=1;
_delay_tus(8);
status=DQ;
_delay_tus(100);
DQ=1;
return status;
}
/**************************************************/
/*函数功能:从DS18B20读取一字节*/
/*入口参数:无 */
/*出口函数:dat(返回读取到数据) */
/**************************************************/
uchar Read_One_Byte(void)
{
uchar i,dat=0;
DQ=1;
_nop_();
for(i=8;i>0;i--)
{
DQ=0;
dat>>=1;
DQ=1;
_nop_();_nop_();
if(DQ)
dat|=0x80;
_delay_tus(30);
DQ=1;
}
return dat;
}
/**************************************************/
/*函数功能:向DS18B20写一字节*/
/*入口参数:dat(把dat写入DS18B20) */
/*出口函数:无 */
/**************************************************/
void Write_One_Byte(uchar dat)
{
uchar i;
for(i=8;i>0;i--)
{
DQ=0;
DQ=dat&0x01;
_delay_tus(5);
DQ=1;
dat>>=1;
}
}
/**************************************************/
/*函数功能:从DS18B20读取数据(数据)*/
/*入口参数:无 */
/*出口函数:无 */
/**************************************************/
void Read_Temp(void)
{
uchar ng=0;
if(DS18B20_Init()==1)
DS18B20_IS_OK=0;
else
{
Write_One_Byte(0xcc);
Write_One_Byte(0x44);
DS18B20_Init();
Write_One_Byte(0xcc);
Write_One_Byte(0xbe);
Temp_Value[0]=Read_One_Byte();
Temp_Value[1]=Read_One_Byte();
DS18B20_IS_OK=1;
}
if((Temp_Value[1]&0xf8)==0xf8)
{
Temp_Value[1]=~Temp_Value[1];
Temp_Value[0]=~Temp_Value[0]+1;
if(Temp_Value[0]==0x00)
Temp_Value[1]++;
ng=1;
}
Display_Digit[0]=df_tab[Temp_Value[0]&0x0f];
Temp=((Temp_Value[0]&0xf0)>>4)|((Temp_Value[1]&0x07)<<4);
Display_Digit[3]=Temp/100;
Display_Digit[2]=Temp%100/10;
Display_Digit[1]=Temp%10;
}
/**************************************************/
/*函数功能:从DS18B20读取数据转换成ASCII码写入液晶 */
/*模块 */
/*入口参数:无 */
/*出口函数:无 */
/**************************************************/
/*void Display_Temperature(void)
{
uchar ng=0;
if((Temp_Value[1]&0xf8)==0xf8)
{
Temp_Value[1]=~Temp_Value[1];
Temp_Value[0]=~Temp_Value[0]+1;
if(Temp_Value[0]==0x00)
Temp_Value[1]++;
ng=1;
}
Display_Digit[0]=df_tab[Temp_Value[0]&0x0f];
Temp=((Temp_Value[0]&0xf0)>>4)|((Temp_Value[1]&0x07)<<4);
Display_Digit[3]=Temp/100;
Display_Digit[2]=Temp%100/10;
Display_Digit[1]=Temp%10;
}
Display_LINE1[13]=0x43;
Display_LINE1[12]=0xdf;
Display_LINE1[11]=Display_Digit[0]+'0';
Display_LINE1[10]='.';
Display_LINE1[9]=Display_Digit[1]+'0';
Display_LINE1[8]=Display_Digit[2]+'0';
Display_LINE1[7]=Display_Digit[3]+'0';
if(Display_Digit[3]==0)
Display_LINE1[7]=' ';
if(Display_Digit[2]==0&&Display_Digit[3]==0)
Display_LINE1[8]=' ';
if(ng)
{
if(Display_LINE1[8]==' ')
Display_LINE1[8]='-';
else if(Display_LINE1[7]==' ')
Display_LINE1[7]='-';
else
Display_LINE1[6]='-';
}
LCD_POS(0);
Show_String(Display_LINE0);
LCD_POS(0x40);
Show_String(Display_LINE1);
}
void main(void)
{
Init_LCD();
Read_Temp();
_delay_ms(1000);
while(1)
{
Read_Temp();
if(DS18B20_IS_OK)
Display_Temperature();
_delay_ms(200);
}
}*/
/*nRF24L01初始化*/
void nRF24L01_Init(void)
{
_delay_us(2000);
CE=0;//待机模式Ⅰ
CSN=1;
SCK=0;
IRQ=1;
}
/*SPI时序函数*/
uchar SPI_RW(uchar byte)
{
uchar i;
for(i=0;i<8;i++)//一字节8位循环8次写入
{
if(byte&0x80)//如果数据最高位是1//当访问多字节寄存器时首先要读/写的是最低字节的高位?
MOSI=1;//向NRF24L01写1
else //否则写0
MOSI=0;
byte<<=1;//低一位移到最高位
SCK=1;//SCK拉高,写入一位数据,同时读取一位数据
if(MISO)
byte|=0x01;
SCK=0;//SCK拉低
}
return byte;//返回读取一字节
}
/*SPI写寄存器一字节函数*/
/*reg:寄存器地址*/
/*value:一字节(值)*/
uchar SPI_W_Reg(uchar reg,uchar value)
{
uchar status;//返回状态
CSN=0;//SPI片选
status=SPI_RW(reg);//写入寄存器地址,同时读取状态
SPI_RW(value);//写入一字节
CSN=1;//
return status;//返回状态
}
/*SPI*/
uchar SPI_R_byte(uchar reg)
{
uchar reg_value;
CSN=0;//SPI片选
SPI_RW(reg);//写入地址
reg_value=SPI_RW(0);//读取寄存器的值
CSN=1;
return reg_value;//返回读取的值
}
/*SPI读取RXFIFO寄存器数据*/
/*reg:寄存器地址*/
/**Dat_Buffer:用来存读取的数据*/
/*DLen:数据长度*/
uchar SPI_R_DBuffer(uchar reg,uchar *Dat_Buffer,uchar Dlen)
{
uchar status,i;
CSN=0;//SPI片选
status=SPI_RW(reg);//写入寄存器地址,同时状态
for(i=0;i<Dlen;i++)
{
Dat_Buffer[i]=SPI_RW(0);//存储数据
}
CSN=1;
return status;
}
/*SPI向TXFIFO寄存器写入数据*/
/*reg:写入寄存器地址*/
/*TX_Dat_Buffer:存放需要发送的数据*/
/*Dlen:数据长度*/
uchar SPI_W_DBuffer(uchar reg,uchar *TX_Dat_Buffer,uchar Dlen)
{
uchar status,i;
CSN=0;//SPI片选,启动时序
status=SPI_RW(reg);
for(i=0;i<Dlen;i++)
{
SPI_RW(TX_Dat_Buffer[i]);//发送数据
}
CSN=1;
return status;
}
/*设置发送模式*/
void nRF24L01_Set_TX_Mode(uchar *TX_Data)
{
CE=0;//待机(写寄存器之前一定要进入待机模式或掉电模式)
SPI_W_DBuffer(W_REGISTER+TX_ADDR,TX_Addr,TX_ADDR_WITDH);/*写寄存器指令+接收节点地址+地址宽度*/
SPI_W_DBuffer(W_REGISTER+RX_ADDR_P0,TX_Addr,TX_ADDR_WITDH);/*为了接收设备应答信号,接收通道0地址与发送地址相同*/
SPI_W_DBuffer(W_TX_PLOAD,TX_Data,TX_DATA_WITDH);/*写有效数据地址+有效数据+有效数据宽度*/
SPI_W_Reg(W_REGISTER+EN_AA,0x01);/*接收通道0自动应答*/
SPI_W_Reg(W_REGISTER+EN_RX_ADDR,0x01);/*使能接收通道0*/
SPI_W_Reg(W_REGISTER+SETUP_RETR,0x0a);/*自动重发延时250US+86US,重发10次*/
//SPI_W_Reg(W_REGISTER+RX_PW_P0,RX_DATA_WITDH);
SPI_W_Reg(W_REGISTER+RF_CH,0x40);/*(2400+40)MHZ选择射频通道0X40*/
SPI_W_Reg(W_REGISTER+RF_SETUP,0x07);/*1Mbps速率,发射功率:0DBM,低噪声放大器增益*/
SPI_W_Reg(W_REGISTER+CONFIG,0x0e);/*发送模式,上电,16位CRC校验,CRC使能*/
CE=1;//启动发射
_delay_ms(5);/*CE高电平持续时间最少10US以上*/
}
uchar Check_Rec(void)
{
uchar status;
sta=SPI_R_byte(R_REGISTER+STATUS);
if(RX_DR)
{
CE=0;
SPI_R_DBuffer(R_RX_PLOAD,RX_Buffer,RX_DATA_WITDH);
status=1;
}
SPI_W_Reg(W_REGISTER+STATUS,0xff);
return status;
}
/*检测应答信号*/
uchar Check_Ack(void)
{
sta=SPI_R_byte(R_REGISTER+STATUS);/*读取寄存状态*/
if(TX_DS||MAX_RT)/*如果TX_DS或MAX_RT为1,则清除中断和清除TX_FIFO寄存器的值*/
{
SPI_W_Reg(W_REGISTER+STATUS,0xff);
CSN=0;
SPI_RW(FLUSH_TX);
CSN=1;
return 0;
}
else
return 1;
}
void main(void)
{
uchar i;
P0=0xff;
P1=0xff;
P2=0xff;
P3=0xff;
nRF24L01_Init();
Read_Temp();
_delay_ms(1000);
while(1)
{
Read_Temp();
if(DS18B20_IS_OK)
{
for(i=0;i<TX_DATA_WITDH-4;i++)//减1是因为最后一位为结束标志
{
LED=~LED;
nRF24L01_Set_TX_Mode(&Display_Digit[i]);
_delay_ms(100);
while(Check_Ack());
//LED=0;
}
}
}
}
/******************************无线温度接收***********************/
#include <reg52.h>
#include <intrins.h>
#define uint unsigned int
#define uchar unsigned char
#define TX_ADDR_WITDH 5//发送地址宽度设置为5个字节
#define RX_ADDR_WITDH 5
#define TX_DATA_WITDH 5
#define RX_DATA_WITDH 5
/******************************************************************
// nRF24L01指令格式:
*******************************************************************/
#define R_REGISTER 0x00 // 读寄存器
#define W_REGISTER 0x20 // 写寄存器
#define R_RX_PLOAD 0x61 // 读RX FIFO有效数据,1-32字节,当读数据完成后,数据被清除,应用于接收模式
#define W_TX_PLOAD 0xA0 // 写TX FIFO有效数据,1-32字节,写操作从字节0开始,应用于发射模式
#define FLUSH_TX 0xE1 // 清除TX FIFO寄存器,应用于发射模式
#define FLUSH_RX 0xE2 // 清除RX FIFO寄存器,应用于接收模式
#define REUSE_TX_PL 0xE3 // 重新使用上一包有效数据,当CE为高过程中,数据包被不断的重新发射
#define NOP 0xFF // 空操作,可以用来读状态寄存器
/******************************************************************
// nRF24L01寄存器地址
*******************************************************************/
#define CONFIG 0x00 // 配置寄存器
#define EN_AA 0x01 // “自动应答”功能寄存器
#define EN_RX_ADDR 0x02 // 接收通道使能寄存器
#define SETUP_AW 0x03 // 地址宽度设置寄存器
#define SETUP_RETR 0x04 // 自动重发设置寄存器
#define RF_CH 0x05 // 射频通道频率设置寄存器
#define RF_SETUP 0x06 // 射频设置寄存器
#define STATUS 0x07 // 状态寄存器
#define OBSERVE_TX 0x08 // 发送检测寄存器
#define CD 0x09 // 载波检测寄存器
#define RX_ADDR_P0 0x0A // 数据通道0接收地址寄存器
#define RX_ADDR_P1 0x0B // 数据通道1接收地址寄存器
#define RX_ADDR_P2 0x0C // 数据通道2接收地址寄存器
#define RX_ADDR_P3 0x0D // 数据通道3接收地址寄存器
#define RX_ADDR_P4 0x0E // 数据通道4接收地址寄存器
#define RX_ADDR_P5 0x0F // 数据通道5接收地址寄存器
#define TX_ADDR 0x10 // 发送地址寄存器
#define RX_PW_P0 0x11 // 数据通道0有效数据宽度设置寄存器
#define RX_PW_P1 0x12 // 数据通道1有效数据宽度设置寄存器
#define RX_PW_P2 0x13 // 数据通道2有效数据宽度设置寄存器
#define RX_PW_P3 0x14 // 数据通道3有效数据宽度设置寄存器
#define RX_PW_P4 0x15 // 数据通道4有效数据宽度设置寄存器
#define RX_PW_P5 0x16 // 数据通道5有效数据宽度设置寄存器
#define FIFO_STATUS 0x17 // FIFO状态寄存器
//*********************************************************************************
uchar sta; // 状态变量
#define RX_DR (sta & 0x40) // 接收成功中断标志
#define TX_DS (sta & 0x20) // 发射成功中断标志
#define MAX_RT (sta & 0x10) // 重发溢出中断标志
sbit CE=P1^5; //RX/TX模式选择端
sbit IRQ=P1^0; //可屏蔽中断端
sbit CSN=P1^4; //SPI片选端//就是SS
sbit MOSI=P1^2;//SPI主机输出从机输入端
sbit MISO=P1^1;//SPI主机输出从机输出端
sbit SCK=P1^3;//SPI时钟端
sbit LED=P0^0;
sbit key=P2^0;
sbit LCD_RS=P2^2;
sbit LCD_RW=P2^1;
sbit LCD_EN=P2^0;
uchar code TX_Addr[]={0x34,0x43,0x10,0x10,0x01};
uchar code TX_Buffer[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};
uchar RX_Buffer[RX_DATA_WITDH];
uchar code Display_LINE0[]={" FROM NRF24L01:"};
uchar Display_LINE1[]={" TEMP: "};
void _delay_us(uint x)
{
uint i,j;
for (j=0;j<x;j++)
for (i=0;i<12;i++);
}
void _delay_ms(uint x)
{
uint i,j;
for (j=0;j<x;j++)
for (i=0;i<120;i++);
}
bit LCD_Busy(void)//测忙
{
bit LCD_Status;//返回值变量
LCD_RS=0;//读取状态
LCD_RW=1;
LCD_EN=1;
_nop_();_nop_();_nop_();_nop_();
LCD_Status=(bit)(P3&0x80);
LCD_EN=0;
return LCD_Status;
}
void LCD_Write_Command(uchar cmd)//写指令
{
//while(LCD_Busy());
LCD_RS=0;//
LCD_RW=0;
LCD_EN=0;
_nop_();_nop_();
P3=cmd;
_nop_();_nop_();_nop_();_nop_();
LCD_EN=1;
_nop_();_nop_();_nop_();_nop_();
LCD_EN=0;
}
void LCD_Write_Data(uchar dat)//写数据
{
//while(LCD_Busy());//每次写数据操作之前均需要检测忙信号
LCD_RS=1;
LCD_RW=0;
LCD_EN=0;
P3=dat;
_nop_();_nop_();_nop_();_nop_();
LCD_EN=1;
_nop_();_nop_();_nop_();_nop_();
LCD_EN=0;
}
void Init_LCD(void)//液晶初始化
{
_delay_ms(15);//延时15MS
LCD_Write_Command(0x38);
_delay_ms(5);
LCD_Write_Command(0x38);
_delay_ms(5);
LCD_Write_Command(0x38);//以后每次写指令操作之前均需要检测忙信号
//while(LCD_Busy());
_delay_ms(5);
LCD_Write_Command(0x01);//清屏
//while(LCD_Busy());
_delay_ms(5);
LCD_Write_Command(0x38);//设置16*2显示,5*7点阵,8位数据接口
_delay_ms(5);
//while(LCD_Busy());
LCD_Write_Command(0x0c);//开显示,不显示光标
_delay_ms(5);
//while(LCD_Busy());
LCD_Write_Command(0x06);//当读或写一个字符后地址指针加一,且光标加一
}
void LCD_POS(uchar pos)//字符显示位置
{
LCD_Write_Command(0x80|pos);
}
void Show_String(uchar *str)//显示字符串
{
while(*str!='\0')
LCD_Write_Data(*str++);
}
void nRF24L01_Init(void)
{
_delay_us(2000);
CE=0;
CSN=1;
SCK=0;
IRQ=1;
}
uchar SPI_RW(uchar byte)
{
uchar i;
for(i=0;i<8;i++)
{
if(byte&0x80)
MOSI=1;
else
MOSI=0;
byte<<=1;
SCK=1;
if(MISO)
byte|=0x01;
SCK=0;
}
return byte;
}
uchar SPI_W_Reg(uchar reg,uchar value)
{
uchar status;
CSN=0;
status=SPI_RW(reg);
SPI_RW(value);
CSN=1;
return status;
}
uchar SPI_R_byte(uchar reg)
{
uchar status;
CSN=0;
SPI_RW(reg);
status=SPI_RW(0);
CSN=1;
return status;
}
uchar SPI_R_DBuffer(uchar reg,uchar *Dat_Buffer,uchar Dlen)
{
uchar reg_value,i;
CSN=0;
reg_value=SPI_RW(reg);
for(i=0;i<Dlen;i++)
{
Dat_Buffer[i]=SPI_RW(0);
}
CSN=1;
return reg_value;
}
uchar SPI_W_DBuffer(uchar reg,uchar *TX_Dat_Buffer,uchar Dlen)
{
uchar reg_value,i;
CSN=0;
reg_value=SPI_RW(reg);
for(i=0;i<Dlen;i++)
{
SPI_RW(TX_Dat_Buffer[i]);
}
CSN=1;
return reg_value;
}
void nRF24L01_Set_RX_Mode(void)
{
CE=0;//待机
//SPI_W_DBuffer(W_REGISTER+TX_ADDR,TX_Addr,TX_ADDR_WITDH);
SPI_W_DBuffer(W_REGISTER+RX_ADDR_P0,TX_Addr,TX_ADDR_WITDH);
SPI_W_Reg(W_REGISTER+EN_AA,0x01);
SPI_W_Reg(W_REGISTER+EN_RX_ADDR,0x01);
//SPI_W_Reg(W_REGISTER+SETUP_RETR,0x0a);
SPI_W_Reg(W_REGISTER+RX_PW_P0,RX_DATA_WITDH);
SPI_W_Reg(W_REGISTER+RF_CH,0x40);
SPI_W_Reg(W_REGISTER+RF_SETUP,0x07);
SPI_W_Reg(W_REGISTER+CONFIG,0x0f);
CE=1;
_delay_ms(5);
}
uchar nRF24L01_RX_Data(void)
{
//uchar i,status;
sta=SPI_R_byte(R_REGISTER+STATUS);
if(RX_DR)
{
CE=0;
SPI_R_DBuffer(R_RX_PLOAD,RX_Buffer,RX_DATA_WITDH);
//P3=RX_Buffer[0];
SPI_W_Reg(W_REGISTER+STATUS,0xff);
CSN=0;
SPI_RW(FLUSH_RX);
CSN=1;
return 1;
}
else
return 0;
}
void main(void)
{
uchar i,RX_Temp_Value[RX_DATA_WITDH];//ng;
P0=0xff;
P1=0xff;
P2=0xff;
P3=0xff;
Init_LCD();
nRF24L01_Init();
_delay_us(1000);
LCD_POS(0);
Show_String(Display_LINE0);
while(1)
{
nRF24L01_Set_RX_Mode();
//_delay_ms(100);
if(nRF24L01_RX_Data())
{
for(i=0;i<RX_DATA_WITDH;i++)
{
RX_Temp_Value[i]=RX_Buffer[i];
LED=~LED;
}
}
Display_LINE1[7]=RX_Temp_Value[3]+'0';
Display_LINE1[8]=RX_Temp_Value[2]+'0';
Display_LINE1[9]=RX_Temp_Value[1]+'0';
Display_LINE1[10]='.';
Display_LINE1[11]=RX_Temp_Value[0]+'0';
Display_LINE1[12]=0xdf;
Display_LINE1[13]=0x43;
if(RX_Temp_Value[3]==0)
Display_LINE1[7]=' ';
/*if(RX_Temp_Value[2]==0&&RX_Temp_Value[3]==0)
Display_LINE1[8]=' ';
if(ng)
{
if(Display_LINE1[8]==' ')
Display_LINE1[8]='-';
else if(Display_LINE1[7]==' ')
Display_LINE1[7]='-';
else
Display_LINE1[6]='-';*/
LCD_POS(0x40);
Show_String(Display_LINE1);
}
}
已通过测试的,希望能帮助到你!
㈡ 麻烦您把用单片机控制NRF24L01无线模块发送和接收,也就是“收发一体”的程序给我可以吗
这个程序是我亲手调试成功的,希望可以帮助到你。这个会了,其他复杂的也就不怎么复杂了。
#include <reg52.h>#include <intrins.h>
typedef unsigned char uchar;
typedef unsigned char uint;
/************************************NRF24L01端口定义***********************************/
sbit MISO =P2^0; //数字输出(从 SPI 数据输出脚)
sbit MOSI =P2^1; //数字输入(从 SPI 数据输入脚)
sbit SCK =P2^2; //数字输入(SPI 时钟)
sbit CE =P2^3; //数字输入(RX 或 TX 模式选择)
sbit CSN =P2^4; //数字输入(SPI片选信号)
sbit IRQ =P2^5; //数字输入(可屏蔽中断)
/************************************按键***********************************************/
sbit KEY1=P3^1;//按键S1
sbit KEY2=P3^2;//按键S2
/************************************数码管位选******************************************/
sbit led1=P1^0; //LED0
sbit led2=P1^1; //LED1
//*********************************************NRF24L01*************************************
#define TX_ADR_WIDTH 1 // 5 uints TX address width
#define RX_ADR_WIDTH 1 // 5 uints RX address width
#define TX_PLOAD_WIDTH 20 // 20 uints TX payload
#define RX_PLOAD_WIDTH 20 // 20 uints TX payload
uint const TX_ADDRESS[TX_ADR_WIDTH]= {0x34};//,0x43,0x10,0x10,0x01}; //本地地址
uint const RX_ADDRESS[RX_ADR_WIDTH]= {0x34};//,0x43,0x10,0x10,0x01}; //接收地址
//***************************************NRF24L01寄存器指令*******************************************************
#define READ_REG 0x00 // 读寄存器指令
#define WRITE_REG 0x20 // 写寄存器指令
#define RD_RX_PLOAD 0x61 // 读取接收数据指令
#define WR_TX_PLOAD 0xA0 // 写待发数据指令
#define FLUSH_TX 0xE1 // 冲洗发送 FIFO指令
#define FLUSH_RX 0xE2 // 冲洗接收 FIFO指令
#define REUSE_TX_PL 0xE3 // 定义重复装载数据指令
#define NOP 0xFF // 保留
//*************************************SPI(nRF24L01)寄存器地址****************************************************
#define CONFIG 0x00 // 配置收发状态,CRC校验模式以及收发状态响应方式
#define EN_AA 0x01 // 自动应答功能设置
#define EN_RXADDR 0x02 // 可用信道设置
#define SETUP_AW 0x03 // 收发地址宽度设置
#define SETUP_RETR 0x04 // 自动重发功能设置
#define RF_CH 0x05 // 工作频率设置
#define RF_SETUP 0x06 // 发射速率、功耗功能设置
#define STATUS 0x07 // 状态寄存器
#define OBSERVE_TX 0x08 // 发送监测功能
#define CD 0x09 // 地址检测
#define RX_ADDR_P0 0x0A // 频道0接收数据地址
#define RX_ADDR_P1 0x0B // 频道1接收数据地址
#define RX_ADDR_P2 0x0C // 频道2接收数据地址
#define RX_ADDR_P3 0x0D // 频道3接收数据地址
#define RX_ADDR_P4 0x0E // 频道4接收数据地址
#define RX_ADDR_P5 0x0F // 频道5接收数据地址
#define TX_ADDR 0x10 // 发送地址寄存器
#define RX_PW_P0 0x11 // 接收频道0接收数据长度
#define RX_PW_P1 0x12 // 接收频道1接收数据长度
#define RX_PW_P2 0x13 // 接收频道2接收数据长度
#define RX_PW_P3 0x14 // 接收频道3接收数据长度
#define RX_PW_P4 0x15 // 接收频道4接收数据长度
#define RX_PW_P5 0x16 // 接收频道5接收数据长度
#define FIFO_STATUS 0x17 // FIFO栈入栈出状态寄存器设置
//**************************************************************************************
void Delay(unsigned int s);
void inerDelay_us(unsigned char n);
void init_NRF24L01(void);
uint SPI_RW(uint uchar);
uchar SPI_Read(uchar reg);
void SetRX_Mode(void);
uint SPI_RW_Reg(uchar reg, uchar value);
uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars);
uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars);
unsigned char nRF24L01_RxPacket(unsigned char* rx_buf);
void nRF24L01_TxPacket(unsigned char * tx_buf);
//*****************************************长延时*****************************************
void Delay(unsigned int s)
{
unsigned int i;
for(i=0; i<s; i++);
for(i=0; i<s; i++);
}
//******************************************************************************************
uint bdata sta; //状态标志
sbit RX_DR =sta^6;
sbit TX_DS =sta^5;
sbit MAX_RT =sta^4;
/******************************************************************************************
/*延时函数
/******************************************************************************************/
void inerDelay_us(unsigned char n)
{
for(;n>0;n--)
_nop_();
}
//****************************************************************************************
/*NRF24L01初始化
//***************************************************************************************/
void init_NRF24L01(void)
{
inerDelay_us(100);
CE=0; // chip enable
CSN=1; // Spi disable
SCK=0; //
SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); // 写本地地址
SPI_Write_Buf(WRITE_REG/*写寄存器指令*/ + RX_ADDR_P0/*接收频道0接收数据长度*/, RX_ADDRESS, RX_ADR_WIDTH); // 写接收端地址
SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); // 频道0自动 ACK应答允许
SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); // 允许接收地址只有频道0,如果需要多频道可以参考Page21
SPI_RW_Reg(WRITE_REG + RF_CH, 0); // 设置信道工作为2.4GHZ,收发必须一致
SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH/*20*/); //设置接收数据长度,本次设置为32字节
SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); //设置发射速率为1MHZ,发射功率为最大值0dB
}
/****************************************************************************************************
/*函数:uint SPI_RW(uint uchar)
/*功能:NRF24L01的SPI写时序
/****************************************************************************************************/
uint SPI_RW(uint uchar)
{
uint bit_ctr;
for(bit_ctr=0;bit_ctr<8;bit_ctr++) // output 8-bit
{
MOSI = (uchar & 0x80); // output 'uchar', MSB to MOSI
uchar = (uchar << 1); // shift next bit into MSB..
SCK = 1; // Set SCK high..
uchar |= MISO; // capture current MISO bit
SCK = 0; // ..then set SCK low again
}
return(uchar); // return read uchar
}
/****************************************************************************************************
/*函数:uchar SPI_Read(uchar reg)
/*功能:NRF24L01的SPI时序
/****************************************************************************************************/
uchar SPI_Read(uchar reg)
{
uchar reg_val;
CSN = 0; // CSN low, initialize SPI communication...
SPI_RW(reg); // Select register to read from..
reg_val = SPI_RW(0); // ..then read registervalue
CSN = 1; // CSN high, terminate SPI communication
return(reg_val); // return register value
}
/****************************************************************************************************/
/*功能:NRF24L01读写寄存器函数
/****************************************************************************************************/
uint SPI_RW_Reg(uchar reg, uchar value)
{
uint status;
CSN = 0; // CSN low, init SPI transaction
status = SPI_RW(reg); // select register
SPI_RW(value); // ..and write value to it..
CSN = 1; // CSN high again
return(status); // return nRF24L01 status uchar
}
/****************************************************************************************************/
/*函数:uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)
/*功能: 用于读数据,reg:为寄存器地址,pBuf:为待读出数据地址,uchars:读出数据的个数
/****************************************************************************************************/
uint SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)
{
uint status,uchar_ctr;
CSN = 0; // Set CSN low, init SPI tranaction
status = SPI_RW(reg); // Select register to write to and read status uchar
for(uchar_ctr=0;uchar_ctr<uchars;uchar_ctr++)
pBuf[uchar_ctr] = SPI_RW(0); //
CSN = 1;
return(status); // return nRF24L01 status uchar
}
/*********************************************************************************************************
/*函数:uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars)
/*功能: 用于写数据:为寄存器地址,pBuf:为待写入数据地址,uchars:写入数据的个数
/*********************************************************************************************************/
uint SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars)
{
uint status,uchar_ctr;
CSN = 0; //SPI使能
status = SPI_RW(reg);
for(uchar_ctr=0; uchar_ctr<uchars; uchar_ctr++) //
SPI_RW(*pBuf++);
CSN = 1; //关闭SPI
return(status); //
}
/****************************************************************************************************/
/*函数:void SetRX_Mode(void)
/*功能:数据接收配置
/****************************************************************************************************/
void SetRX_Mode(void)
{
CE=0;
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f); // IRQ收发完成中断响应,16位CRC ,主接收
CE = 1;
inerDelay_us(130);
}
/******************************************************************************************************/
/*函数:unsigned char nRF24L01_RxPacket(unsigned char* rx_buf)
/*功能:数据读取后放如rx_buf接收缓冲区中
/******************************************************************************************************/
unsigned char nRF24L01_RxPacket(unsigned char* rx_buf)//定义了一个指针//
{
unsigned char revale=0;
sta=SPI_Read(STATUS); // 读取状态寄存其来判断数据接收状况
if(RX_DR) // 判断是否接收到数据
{
CE = 0; //SPI使能
SPI_Read_Buf(RD_RX_PLOAD,rx_buf,TX_PLOAD_WIDTH);// read receive payload from RX_FIFO buffer
revale =1; //读取数据完成标志
}
SPI_RW_Reg(WRITE_REG+STATUS,sta); //接收到数据后RX_DR,TX_DS,MAX_PT都置高为1,通过写1来清楚中断标志
return revale;
}
/***********************************************************************************************************
/*函数:void nRF24L01_TxPacket(unsigned char * tx_buf)
/*功能:发送 tx_buf中数据
/**********************************************************************************************************/
void nRF24L01_TxPacket(unsigned char * tx_buf)//定义了一个指针//
{
CE=0; //StandBy I模式
SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH); // 装载接收端地址
SPI_Write_Buf(WR_TX_PLOAD, tx_buf, TX_PLOAD_WIDTH); // 装载数据
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e); // IRQ收发完成中断响应,16位CRC,主发送
CE=1; //置高CE,激发数据发送
inerDelay_us(10);
}
//************************************主函数************************************************************
void main(void)
{
unsigned char tf =0; //定义的状态变量//
unsigned char TxBuf[20]={0}; // 20个状态//
unsigned char RxBuf[20]={0}; // 20个状态//
init_NRF24L01() ; //24L01初始化//
led1=1;led2=1; //关灯//
TxBuf[1] = 1 ;
TxBuf[2] = 1 ;
nRF24L01_TxPacket(TxBuf); // Transmit Tx buffer data 发送数据//
Delay(6000);
while(1)
{
if(KEY1 ==0 )
{
TxBuf[1] = 15 ;
tf = 1 ;
led1=0;
Delay(120);
led1=1;
Delay(120);
}
if(KEY2 ==0 )
{
TxBuf[2] =1 ;
tf = 1 ;
led2=0;
Delay(120);
led2=1;
Delay(120);
}
if (tf==1)
{
nRF24L01_TxPacket(TxBuf); // Transmit Tx buffer data
TxBuf[1] = 0x00;
TxBuf[2] = 0x00;
tf=0;
Delay(1000);
}
SetRX_Mode();
RxBuf[1] = 0x00;
RxBuf[2] = 0x00;
Delay(1000);
nRF24L01_RxPacket(RxBuf);
if(RxBuf[1]|RxBuf[2])
{
if( RxBuf[1]==15)
{
led1=0;
}
if( RxBuf[2]==1)
{
led2=0;
}
Delay(6000); //old is '1000'
}
RxBuf[1] = 0x00;
RxBuf[2] = 0x00;
led1=1;
led2=1;
}
}
㈢ 大家来说一下,433M无线通信模块程序怎么写
1、433M无线通信模块的程序是根据通信芯片的编程资料和你需要收发的数据来编写的。
2、需要外加一个单片机来进行数据收发控制和设置通信芯片的。
3、如果通信芯片不需要设置,那么就可以直接将所需要收到的数据送到通信芯片的RXD脚即可。
㈣ 求51单片机nRF24L01+无线模块的程序和设计电路图,收和发的
nRF24L01是由NORDIC生产的工作在2.4GHz~2.5GHz的ISM 频段的单片无线收发器芯片。无线收发器包括:频率发生器、增强型“SchockBurst”模式控制器、功率放大器、晶体振荡器、调制器和解调器。
nRF24L01供应商:拍明芯城元器件商城
简介
输出功率频道选择和协议的设置可以通过SPI 接口进行设置。几乎可以连接到各种单片机芯片,并完成无线数据传送工作。
极低的电流消耗:当工作在发射模式下发射功率为0dBm 时电流消耗为11.3mA ,接收模式时为12.3mA,掉电模式和待机模式下电流消耗更低。
应用领域
● 无线鼠标 键盘 游戏机操纵杆
● 无线门禁
● 无线数据通讯
● 安防系统
● 遥控装置
● 遥感勘测
● 智能运动设备
● 工业传感器
● 玩具
性能参数
◆ 小体积,QFN20 4x4mm封装
◆ 宽电压工作范围,1.9V~3.6V,输入引脚可承受5V电压输入
◆ 工作温度范围,-40℃~+80℃
◆ 工作频率范围,2.400GHz~2.525GHz
◆ 发射功率可选择为0dBm、-6dBm、-12dBm和-18dBm
◆ 数据传输速率支持1Mbps、2Mbps [1]
◆ 低功耗设计,接收时工作电流12.3mA,0dBm功率发射时11.3mA,掉电模式时仅为900nA
◆ 126个通讯通道,6个数据通道,满足多点通讯和调频需要
◆ 增强型“ShockBurst”工作模式,硬件的CRC校验和点对多点的地址控制
◆ 数据包每次可传输1~32Byte的数据
◆ 4线SPI通讯端口,通讯速率最高可达8Mbps,适合与各种MCU连接,编程简单
◆ 可通过软件设置工作频率、通讯地址、传输速率和数据包长度
◆ MCU可通过IRQ引脚块判断是否完成数据接收和数据发送
原理图
电路原理
nRF24L01原理图