❶ 如何利用java反射构造一个类,使之实现一个接口和一些功能
可以实现,很方便。我去找个例子贴给你
Class FactoryClass = Class.forName(Name);
//Name是DAOFactory实现类的名字
// types of the constructor arguments
Class[] constrArgs = {Properties.class};
Object[] args = {Props};
//Props是Properties类型,它的内容来自一个配置文件
// get Constructor of this class with matching parameter types
Constructor<IDAOFactory> constructor = FactoryClass.getConstructor(constrArgs);
this.factory = constructor.newInstance(args);
❷ Java反射实现几种方式
1. 通过Object类的getClass方法来获取
java.lang.Object中定义有getClass方法:public final Class getClass()
所有Java对象都具备这个方法,该方法用于返回调用该方法的对象的所属类关联的Class对象,例如:
Date date1 = new Date();
Date date2 = new Date();
Class c1 = date1.getClass();
Class c2 = date2.getClass();
System.out.println(c1.getName());
// java.util.Date
System.out.println(c1 == c2);
// true
上面的代码中,调用Date对象date1的getClass方法将返回用于封装Date类信息的Class对象。
这里调用了Class类的getName方法:public String getName(),这个方法的含义很直观,即返回所封装的类的名称。
需要注意的是,代码中的date1和date2的getClass方法返回了相同的Class对象(c1==c2的值为true)。这是因为,对于相同的类,JVM只会载入一次,而与该类对应的Class对象也只会存在一个,无论该类实例化了多少对象。
另外,需要强调的是,当一个对象被其父类的引用或其实现的接口类型的引用所指向时,getClass方法返回的是与对象实际所属类关联的Class对象。例如:
List list = new ArrayList();
System.out.println(list.getClass().getName()); // java.util.ArrayList
上面的代码中,语句list.getClass()方法返回的是list所指向对象实际所属类java.util.ArrayList对应的 Class对象而并未java.util.List所对应的Class对象。有些时候可以通过这个方法了解一个对象的运行时类型,例如:
HashSet set = new HashSet();
Iterator it = set.iterator();
System.out.println(it.getClass().getName()); //java.util.HashMap$KeyIterator
从代码可以看出,HashSet的iterator方法返回的是实现了Iterator接口的HashMap内部类(KeyIterator)对象。
因为抽象类和接口不可能实例化对象,因此不能通过Object的getClass方法获得与抽象类和接口关联的Class对象。
2. 使用.class的方式
使用类名加“.class”的方式即会返回与该类对应的Class对象。例如:
Class clazz = String.class;
System.out.println(clazz.getName()); // java.lang.String
这个方法可以直接获得与指定类关联的Class对象,而并不需要有该类的对象存在。
3. 使用Class.forName方法
Class有一个著名的static方法forName:public static Class forName(String className) throws ClassNotFoundException
该方法可以根据字符串参数所指定的类名获取与该类关联的Class对象。如果该类还没有被装入,该方法会将该类装入JVM。
该方法声明抛出ClassNotFoundException异常。顾名思义,当该方法无法获取需要装入的类时(例如,在当前类路径中不存在这个类),就会抛出这个异常。
例如,如果当前类路径中存在Foo类:
package org.whatisjava.reflect;
public class Foo {
public Foo() {
System.out.println("Foo()");
}
static {
System.out.println("Foo is initialized");
}
}
运行下面的代码:
Class clazz = Class.forName("org.whatisjava.reflect.Foo");
控制台会有如下输出:
Foo is initialized
Class.forName("org.whatisjava.reflect.Foo")首先会将reflection.Foo类装入JVM,并返回与之关联的Class对象。JVM装入Foo类后对其进行初始化,调用了其static块中的代码。需要注意的是:forName方法的参数是类的完 整限定名(即包含包名)。
区别于前面两种获取Class对象的方法:使用Class.forName方法所要获取的与之对应的Class对象的类可以通过字符串的方式给定。该方法通常用于在程序运行时根据类名动态的载入该类并获得与之对应的Class对象。
通过上面的文章相信你对java的反射机制有了一定的认识,同时也对java中Class类的用法有了比较清晰的理解,在我们实际工作的过程中,我们不断的运用java知识来解决实际生活中的问题的时候我们就能对java反射机制有一个更深入的理解!
❸ 如何把一个接口的所有实现类反射出来
如果你自己也不知道这个接口有哪些实现类的,采用java默认的ClassLoader是没有办法获得所有实现类的,因为ClassLoader是在程序运行期间才会加载类到static区域,即如果你的程序需要使用某一个class,jvm发现这个class还没有被ClassLoader加载,就会主动去加载,否则就跳过,你没办法知道那些未被加载的实现类。
如果你知道有哪些实现类的话,那就简单了,自己配置一个xml文件,把实现类的完整类名写在这个xml文件,再写一个解析程序,迭代每一个类名,直接用Class.forName加载就可以了。
甚至你可以去解析所有的java源文件或class文件,像eclipse之类的IDE就是这么干的,它管理工程下的所有class,解析这些class,这样我们写程序的时候,才有代码提示之类的功能。
如果你纯粹只想知道这个接口的实现类,在eclipse里面选中接口,按下F4,eclipse会为你列出所有的实现类。
❹ 如何利用java反射,获取属性接口的具体类
你可以这么写:
class BodyImpl implements Body{
//do something
public static void main(String[] args) {
Type[] interfaces = BodyImpl.class.getInterfaces();
ParameterizedType firstInterface = (ParameterizedType) interfaces[0];
Class c = (Class) firstInterface.getActualTypeArguments()[0];
System.out.println(c.getName()); // prints "AtomEntry"
}
}
就得到你所要的回接口参数了!答
❺ Java的反射机制是什么,如何实现
Java中的反射机制,通俗点解释就是能够在程序运行中动态获取到内存中任一对象的信息,这些信息包括对象所属类、类中的方法和属性、以及它们的访问控制域和返回值类型等等,还可以通过反射动态调用对象中的方法,而不管该方法的访问域是私有或是公开,包括构造方法,还能实现动态代理等。总之,反射能够破坏掉JAVA类本身的封装性,进而获取其私有的或公开的信息,也就能突破封装进而调用私有的或公开的方法。
实现的话就是通过反射接口,JAVA把反射相关的类接口都封装在了java.lang.reflect这个包中,你可以研究下这个包中的类,对于类的每一个属性,如变量、方法,构造方法,这个包中都就与之相对应的类,通过这个类就可以操作这个属性了。
java反射很强大,但也很危险,在实际开发中应少用或不用,在必要用之时,往往也能解决你遇到的问题。
❻ 请问利用Java反射实现一个类中的接口是如何实现的呢
在理解反射的时候,不得不说一下内存。
先理解一下JVM的三个区:堆区,栈区,和方法去(静态区)。
堆区:存放所有的对象,每个对象都有一个与其对应的class信息。在JVM中只有一个堆区,堆区被所有的线程共享。
栈区:存放所有基础数据类型的对象和所有自定义对象的引用,每个线程包含一个栈区。每个栈区中的数据都是私有的,其他栈不能访问。
栈分为三部分:
基本类型变量区、执行环境上下文、操作指令区(存放操作指令)。
方法区:即静态区,被所有的线程共享。方法区包含所有的class和static变量。它们都是唯一的。
在启动一个java虚拟机时,虚拟机要加载你程序里所用到的类 ,这个进程会首先跑到jdk中(在jdk的jre/lib/ext文件夹里找那些jar文件),如果没有找到,会去classpath里设置的路径去找。
在找到要执行的类时:
1.首先将找到的类的信息加载到运行时数据区的方法区。这个过程叫做类的加载。所以一下static类型的在类的加载过程中就已经放到了方法区。所以不用实例化就能用一个static类型的方法。
2.加载完成后,在new一个类时,首先就是去方法区看看有没有这个类的信息。如果没有这个类的信息,先装载这个类。then,加载完成后,会在堆区为new的这个类分配内存,有了内存就有了实例,而这个实例指向的是方法区的该类信息。其实就是存放了在方法区的地址。而反射就是利用了这一点。
❼ java反射机制的实现原理
反射机制:所谓的反射机制就是java语言在运行时拥有一项自观的能力。通过这种能力可以彻底的了解自身的情况为下一步的动作做准备。下面具体介绍一下java的反射机制。这里你将颠覆原来对java的理解。
Java的反射机制的实现要借助于4个类:class,Constructor,Field,Method;其中class代表的时类对 象,Constructor-类的构造器对象,Field-类的属性对象,Method-类的方法对象。通过这四个对象我们可以粗略的看到一个类的各个组 成部分。
Class:程序运行时,java运行时系统会对所有的对象进行运行时类型的处理。这项信息记录了每个对象所属的类,虚拟机通常使用运行时类型信息选择正 确的方法来执行(摘自:白皮书)。但是这些信息我们怎么得到啊,就要借助于class类对象了啊。在Object类中定义了getClass()方法。我 们可以通过这个方法获得指定对象的类对象。然后我们通过分析这个对象就可以得到我们要的信息了。
比如:ArrayList arrayList;
Class clazz = arrayList.getClass();
然后我来处理这个对象clazz。
当然了Class类具有很多的方法,这里重点将和Constructor,Field,Method类有关系的方法。
Reflection 是 Java 程序开发语言的特征之一,它允许运行中的 Java 程序对自身进行检查,或者说“自审”,并能直接操作程序的内部属性。Java 的这一能力在实际应用中也许用得不是很多,但是个人认为要想对java有个更加深入的了解还是应该掌握的。
1.检测类:
reflection的工作机制
考虑下面这个简单的例子,让我们看看 reflection 是如何工作的。
import java.lang.reflect.*;
public class DumpMethods {
public static void main(String args[]) {
try {
Class c = Class.forName(args[0]);
Method m[] = c.getDeclaredMethods();
for (int i = 0; i < m.length; i++)
System.out.println(m[i].toString());
} catch (Throwable e) {
System.err.println(e);
}
}
}
按如下语句执行:
java DumpMethods java.util.ArrayList
这个程序使用 Class.forName 载入指定的类,然后调用 getDeclaredMethods 来获取这个类中定义了的方法列表。java.lang.reflect.Methods 是用来描述某个类中单个方法的一个类。
Java类反射中的主要方法
对于以下三类组件中的任何一类来说 -- 构造函数、字段和方法 -- java.lang.Class 提供四种独立的反射调用,以不同的方式来获得信息。调用都遵循一种标准格式。以下是用于查找构造函数的一组反射调用:
Constructor getConstructor(Class[] params) -- 获得使用特殊的参数类型的公共构造函数,
Constructor[] getConstructors() -- 获得类的所有公共构造函数
Constructor getDeclaredConstructor(Class[] params) -- 获得使用特定参数类型的构造函数(与接入级别无关)
Constructor[] getDeclaredConstructors() -- 获得类的所有构造函数(与接入级别无关)
获得字段信息的Class 反射调用不同于那些用于接入构造函数的调用,在参数类型数组中使用了字段名:
Field getField(String name) -- 获得命名的公共字段
Field[] getFields() -- 获得类的所有公共字段
Field getDeclaredField(String name) -- 获得类声明的命名的字段
Field[] getDeclaredFields() -- 获得类声明的所有字段
用于获得方法信息函数:
Method getMethod(String name, Class[] params) -- 使用特定的参数类型,获得命名的公共方法
Method[] getMethods() -- 获得类的所有公共方法
Method getDeclaredMethod(String name, Class[] params) -- 使用特写的参数类型,获得类声明的命名的方法
Method[] getDeclaredMethods() -- 获得类声明的所有方法
使用 Reflection:
用于 reflection 的类,如 Method,可以在 java.lang.relfect 包中找到。使用这些类的时候必须要遵循三个步骤:第一步是获得你想操作的类的 java.lang.Class 对象。在运行中的 Java 程序中,用 java.lang.Class 类来描述类和接口等。
下面就是获得一个 Class 对象的方法之一:
Class c = Class.forName("java.lang.String");
这条语句得到一个 String 类的类对象。还有另一种方法,如下面的语句:
Class c = int.class;
或者
Class c = Integer.TYPE;
它们可获得基本类型的类信息。其中后一种方法中访问的是基本类型的封装类 (如 Intege ) 中预先定义好的 TYPE 字段。
第二步是调用诸如 getDeclaredMethods 的方法,以取得该类中定义的所有方法的列表。
一旦取得这个信息,就可以进行第三步了——使用 reflection API 来操作这些信息,如下面这段代码:
Class c = Class.forName("java.lang.String");
Method m[] = c.getDeclaredMethods();
System.out.println(m[0].toString());
它将以文本方式打印出 String 中定义的第一个方法的原型。
处理对象:
a.创建一个Class对象
b.通过getField 创建一个Field对象
c.调用Field.getXXX(Object)方法(XXX是Int,Float等,如果是对象就省略;Object是指实例).
例如:
import java.lang.reflect.*;
import java.awt.*;
class SampleGet {
public static void main(String[] args) {
Rectangle r = new Rectangle(100, 325);
printHeight(r);
}
static void printHeight(Rectangle r) {
Field heightField;
Integer heightValue;
Class c = r.getClass();
try {
heightField = c.getField("height");
heightValue = (Integer) heightField.get(r);
System.out.println("Height: " + heightValue.toString());
} catch (NoSuchFieldException e) {
System.out.println(e);
} catch (SecurityException e) {
System.out.println(e);
} catch (IllegalAccessException e) {
System.out.println(e);
}
}
}
安全性和反射:
在处理反射时安全性是一个较复杂的问题。反射经常由框架型代码使用,由于这一点,我们可能希望框架能够全面接入代码,无需考虑常规的接入限制。但是,在其它情况下,不受控制的接入会带来严重的安全性风险,例如当代码在不值得信任的代码共享的环境中运行时。
由于这些互相矛盾的需求,Java编程语言定义一种多级别方法来处理反射的安全性。基本模式是对反射实施与应用于源代码接入相同的限制:
从任意位置到类公共组件的接入
类自身外部无任何到私有组件的接入
受保护和打包(缺省接入)组件的有限接入
不过至少有些时候,围绕这些限制还有一种简单的方法。我们可以在我们所写的类中,扩展一个普通的基本类 java.lang.reflect.AccessibleObject 类。这个类定义了一种setAccessible方法,使我们能够启动或关闭对这些类中其中一个类的实例的接入检测。唯一的问题在于如果使用了安全性管理 器,它将检测正在关闭接入检测的代码是否许可了这样做。如果未许可,安全性管理器抛出一个例外。
下面是一段程序,在TwoString 类的一个实例上使用反射来显示安全性正在运行:
public class ReflectSecurity {
public static void main(String[] args) {
try {
TwoString ts = new TwoString("a", "b");
Field field = clas.getDeclaredField("m_s1");
// field.setAccessible(true);
System.out.println("Retrieved value is " +
field.get(inst));
} catch (Exception ex) {
ex.printStackTrace(System.out);
}
}
}
如果我们编译这一程序时,不使用任何特定参数直接从命令行运行,它将在field .get(inst)调用中抛出一个IllegalAccessException异常。如果我们不注释 field.setAccessible(true)代码行,那么重新编译并重新运行该代码,它将编译成功。最后,如果我们在命令行添加了JVM参数 -Djava.security.manager以实现安全性管理器,它仍然将不能通过编译,除非我们定义了ReflectSecurity类的许可权 限。
反射性能:(转录别人的啊)
反射是一种强大的工具,但也存在一些不足。一个主要的缺点是对性能有影响。使用反射基本上是一种解释操作,我们可以告诉JVM,我们希望做什么并且它满足我们的要求。这类操作总是慢于只直接执行相同的操作。
下面的程序是字段接入性能测试的一个例子,包括基本的测试方法。每种方法测试字段接入的一种形式 -- accessSame 与同一对象的成员字段协作,accessOther 使用可直接接入的另一对象的字段,accessReflection 使用可通过反射接入的另一对象的字段。在每种情况下,方法执行相同的计算 -- 循环中简单的加/乘顺序。
程序如下:
public int accessSame(int loops) {
m_value = 0;
for (int index = 0; index < loops; index++) {
m_value = (m_value + ADDITIVE_VALUE) *
MULTIPLIER_VALUE;
}
return m_value;
}
public int acces
sReference(int loops) {
TimingClass timing = new TimingClass();
for (int index = 0; index < loops; index++) {
timing.m_value = (timing.m_value + ADDITIVE_VALUE) *
MULTIPLIER_VALUE;
}
return timing.m_value;
}
public int accessReflection(int loops) throws Exception {
TimingClass timing = new TimingClass();
try {
Field field = TimingClass.class.
getDeclaredField("m_value");
for (int index = 0; index < loops; index++) {
int value = (field.getInt(timing) +
ADDITIVE_VALUE) * MULTIPLIER_VALUE;
field.setInt(timing, value);
}
return timing.m_value;
} catch (Exception ex) {
System.out.println("Error using reflection");
throw ex;
}
}
在上面的例子中,测试程序重复调用每种方法,使用一个大循环数,从而平均多次调用的时间衡量结果。平均值中不包括每种方法第一次调用的时间,因此初始化时间不是结果中的一个因素。下面的图清楚的向我们展示了每种方法字段接入的时间:
图 1:字段接入时间 :
我们可以看出:在前两副图中(Sun JVM),使用反射的执行时间超过使用直接接入的1000倍以上。通过比较,IBM JVM可能稍好一些,但反射方法仍旧需要比其它方法长700倍以上的时间。任何JVM上其它两种方法之间时间方面无任何显著差异,但IBM JVM几乎比Sun JVM快一倍。最有可能的是这种差异反映了Sun Hot Spot JVM的专业优化,它在简单基准方面表现得很糟糕。反射性能是Sun开发1.4 JVM时关注的一个方面,它在反射方法调用结果中显示。在这类操作的性能方面,Sun 1.4.1 JVM显示了比1.3.1版本很大的改进。
如果为为创建使用反射的对象编写了类似的计时测试程序,我们会发现这种情况下的差异不象字段和方法调用情况下那么显著。使用newInstance()调 用创建一个简单的java.lang.Object实例耗用的时间大约是在Sun 1.3.1 JVM上使用new Object()的12倍,是在IBM 1.4.0 JVM的四倍,只是Sun 1.4.1 JVM上的两部。使用Array.newInstance(type, size)创建一个数组耗用的时间是任何测试的JVM上使用new type[size]的两倍,随着数组大小的增加,差异逐步缩小。随着jdk6.0的推出,反射机制的性能也有了很大的提升。期待中….
总结:
Java语言反射提供一种动态链接程序组件的多功能方法。它允许程序创建和控制任何类的对象(根据安全性限制),无需提前硬编码目标类。这些特性使得反射 特别适用于创建以非常普通的方式与对象协作的库。例如,反射经常在持续存储对象为数据库、XML或其它外部格式的框架中使用。Java reflection 非常有用,它使类和数据结构能按名称动态检索相关信息,并允许在运行着的程序中操作这些信息。Java 的这一特性非常强大,并且是其它一些常用语言,如 C、C++、Fortran 或者 Pascal 等都不具备的。
但反射有两个缺点。第一个是性能问题。用于字段和方法接入时反射要远慢于直接代码。性能问题的程度取决于程序中是如何使用反射的。如果它作为程序运行中相 对很少涉及的部分,缓慢的性能将不会是一个问题。即使测试中最坏情况下的计时图显示的反射操作只耗用几微秒。仅反射在性能关键的应用的核心逻辑中使用时性 能问题才变得至关重要。
许多应用中更严重的一个缺点是使用反射会模糊程序内部实际要发生的事情。程序人员希望在源代码中看到程序的逻辑,反射等绕过了源代码的技术会带来维护问 题。反射代码比相应的直接代码更复杂,正如性能比较的代码实例中看到的一样。解决这些问题的最佳方案是保守地使用反射——仅在它可以真正增加灵活性的地方 ——记录其在目标类中的使用。
一下是对应各个部分的例子:
具体的应用:
1、 模仿instanceof 运算符号
class A {}
public class instance1 {
public static void main(String args[])
{
try {
Class cls = Class.forName("A");
boolean b1
= cls.isInstance(new Integer(37));
System.out.println(b1);
boolean b2 = cls.isInstance(new A());
System.out.println(b2);
}
catch (Throwable e) {
System.err.println(e);
}
}
}
2、 在类中寻找指定的方法,同时获取该方法的参数列表,例外和返回值
import java.lang.reflect.*;
public class method1 {
private int f1(
Object p, int x) throws NullPointerException
{
if (p == null)
throw new NullPointerException();
return x;
}
public static void main(String args[])
{
try {
Class cls = Class.forName("method1");
Method methlist[]
= cls.getDeclaredMethods();
for (int i = 0; i < methlist.length;
i++)
Method m = methlist[i];
System.out.println("name
= " + m.getName());
System.out.println("decl class = " +
m.getDeclaringClass());
Class pvec[] = m.getParameterTypes();
for (int j = 0; j < pvec.length; j++)
System.out.println("
param #" + j + " " + pvec[j]);
Class evec[] = m.getExceptionTypes();
for (int j = 0; j < evec.length; j++)
System.out.println("exc #" + j
+ " " + evec[j]);
System.out.println("return type = " +
m.getReturnType());
System.out.println("-----");
}
}
catch (Throwable e) {
System.err.println(e);
}
}
}
3、 获取类的构造函数信息,基本上与获取方法的方式相同
import java.lang.reflect.*;
public class constructor1 {
public constructor1()
{
}
protected constructor1(int i, double d)
{
}
public static void main(String args[])
{
try {
Class cls = Class.forName("constructor1");
Constructor ctorlist[]
= cls.getDeclaredConstructors();
for (int i = 0; i < ctorlist.length; i++) {
Constructor ct = ctorlist[i];
System.out.println("name
= " + ct.getName());
System.out.println("decl class = " +
ct.getDeclaringClass());
Class pvec[] = ct.getParameterTypes();
for (int j = 0; j < pvec.length; j++)
System.out.println("param #"
+ j + " " + pvec[j]);
Class evec[] = ct.getExceptionTypes();
for (int j = 0; j < evec.length; j++)
System.out.println(
"exc #" + j + " " + evec[j]);
System.out.println("-----");
}
}
catch (Throwable e) {
System.err.println(e);
}
}
}
4、 获取类中的各个数据成员对象,包括名称。类型和访问修饰符号
import java.lang.reflect.*;
public class field1 {
private double d;
public static final int i = 37;
String s = "testing";
public static void main(String args[])
{
try {
Class cls = Class.forName("field1");
Field fieldlist[]
= cls.getDeclaredFields();
for (int i
= 0; i < fieldlist.length; i++) {
Field fld = fieldlist[i];
System.out.println("name
= " + fld.getName());
System.out.println("decl class = " +
fld.getDeclaringClass());
System.out.println("type
= " + fld.getType());
int mod = fld.getModifiers();
System.out.println("modifiers = " +
Modifier.toString(mod));
System.out.println("-----");
}
}
catch (Throwable e) {
System.err.println(e);
}
}
}
5、 通过使用方法的名字调用方法
import java.lang.reflect.*;
public class method2 {
public int add(int a, int b)
{
return a + b;
}
public static void main(String args[])
{
try {
Class cls = Class.forName("method2");
Class partypes[] = new Class[2];
partypes[0] = Integer.TYPE;
partypes[1] = Integer.TYPE;
Method meth = cls.getMethod(
"add", partypes);
method2 methobj = new method2();
Object arglist[] = new Object[2];
arglist[0] = new Integer(37);
arglist[1] = new Integer(47);
Object retobj
= meth.invoke(methobj, arglist);
Integer retval = (Integer)retobj;
System.out.println(retval.intValue());
}
catch (Throwable e) {
System.err.println(e);
}
}
}
6、 创建新的对象
import java.lang.reflect.*;
public class constructor2 {
public constructor2()
{
}
public constructor2(int a, int b)
{
System.out.println(
"a = " + a + " b = " + b);
}
public static void main(String args[])
{
try {
Class cls = Class.forName("constructor2");
Class partypes[] = new Class[2];
partypes[0] = Integer.TYPE;
partypes[1] = Integer.TYPE;
Constructor ct
= cls.getConstructor(partypes);
Object arglist[] = new Object[2];
arglist[0] = new Integer(37);
arglist[1] = new Integer(47);
Object retobj = ct.newInstance(arglist);
}
catch (Throwable e) {
System.err.println(e);
}
}
}
7、 变更类实例中的数据的值
import java.lang.reflect.*;
public class field2 {
public double d;
public static void main(String args[])
{
try {
Class cls = Class.forName("field2");
Field fld = cls.getField("d");
field2 f2obj = new field2();
System.out.println("d = " + f2obj.d);
fld.setDouble(f2obj, 12.34);
System.out.println("d = " + f2obj.d);
}
catch (Throwable e) {
System.err.println(e);
}
}
}
使用反射创建可重用代码:
1、 对象工厂
Object factory(String p) {
Class c;
Object o=null;
try {
c = Class.forName(p);// get class def
o = c.newInstance(); // make a new one
} catch (Exception e) {
System.err.println("Can't make a " + p);
}
return o;
}
public class ObjectFoundry {
public static Object factory(String p)
throws ClassNotFoundException,
InstantiationException,
IllegalAccessException {
Class c = Class.forName(p);
Object o = c.newInstance();
return o;
}
}
2、 动态检测对象的身份,替代instanceof
public static boolean
isKindOf(Object obj, String type)
throws ClassNotFoundException {
// get the class def for obj and type
Class c = obj.getClass();
Class tClass = Class.forName(type);
while ( c!=null ) {
if ( c==tClass ) return true;
c = c.getSuperclass();
}
return false;
}
❽ 用java实现类和对象的反射,代码最好有注释,谢谢
Class c=Class.forName("entity.Student");//获得对象的类加载器
Field[] f=c.getFields();//获得改对象的属性
for (int i = 0; i < f.length; i++) {
System.out.println(f[i].getName());
}
Student stu=(Student)c.newInstance();//反射出实例
Field f=c.getDeclaredField("name");//通过属性名称获得私有属性
f.setAccessible(true);//打开私有属性访问权限
f.set(stu, "zs");//通过类对象对对象属性赋值
System.out.println(stu.getName());
}
//获得构造
Constructor cons=c.getDeclaredConstructor(new Class []{String.class,int.class});
Method met=c.getMethod("setAge",new Class[]{Integer.TYPE});//获得方法
met.setAccessible(true);//打开访问权限
met.invoke(stu, 10);.//调用方法,传入对象,第二个参数是被调用方法传的参数,没有就写null
❾ java中反射实例类装载的步骤及简要阐述
1、认识Java的反射机制:
在正常情况下,必须知道一个类的完整路径之后才可以实例化对象,但是在java中也允许通过一个对象找到其所在的类的信息,那么实际上就是class类的功能。
2、Object类对反射的支持
在Object类中定义了以下的方法,此方法将被所有子类继承:
·public final Class<?> getClass()
以上方法返回值的类型是一个“class”类,实际上此类是Java反射的源头,所谓反射:即可以通过对象反射求出类的名称。
3、Class类
Class本身表示一个类的本身,通过Class可以完整的得到一个类中和完整结构,包括此类中的方法定义,属性定义等等。
4、实例化Class类对象的方法有三种:
第一种:通过forname()方法
第二种:类.class
第三种:对象.getClass()
package org.zhh.getclassdemo;
class X{
}
public class GetClassDemo02{
public static void main(String args[]){
Class<?> c1 = null;//指定泛型
Class<?> c2 = null;//指定泛型
Class<?> c3 = null;//指定泛型
try{
//以下的操作形式是开发中最常用一种形式
c1 = Class.forName("org.zhh.getclassdemo.X");
}catch(ClassNotFoundException e){
e.printStackTrace();
}
c2 = new X().getClass();//通过Object类中的方法实例化
c3 = X.class;//通过类本身实例化
c3 = X.class;//通过类本身实例化
System.out.println("类名称:" + c1.getName());
System.out.println("类名称:" + c2.getName());
System.out.println("类名称:" + c3.getName());
}
}
一旦可以实例Class类之后,就可以进行反射的操作了。
有问题欢迎提问,满意请采纳,谢谢!