㈠ 宽带放大器的设计
一种可编程宽带放大器的设计1 引言
随着微电子技术的发展,宽带放大器在科研中具有重要作用。宽带运算放大器广泛应用于A/D转换器、D/A 转换器、有源滤波器、波形发生器、视频放大器等电路。这些电路要求运算放大器具有较高的频带宽度,电压增值。为此,以可编程增益放大器THS7001和可 变增益放大器AD603为核心,设计一种可编程宽带运算放大器。该电路增益调节范围为-6~70 dB,步进间距为6dB,AGC为60 dB,-3 dB通频带为40 Hz~15MHz。矩阵键盘设置增益值、步进,点阵液晶显示实时电压有效值,人机界面友好,操作简单方便。
2 系统总体设计方案
该系统主要由可控增益放大器、功率放大与峰值检波、单片机显示和控制3大模块组成。其中可变增益放大器以THS7001和AD603为核心。单片机控制 THS7001实现增益粗调,并通过D/A转换控制AD603实现增益细调,从而使总增益在- 6~70 dB的宽频带范围内线亏简兆性变化。前置放大器采用由宽带电压型反馈运放THS4011构成的射极跟随器,可有效提高输入电阻;后级功率放大器采用电流型反馈运 放AD811,提高系统带负载能力。由二极管峰值检波电路测量峰值,并通过A/D转换、D/A转换实现自动增益控制。通过键盘手动预置增益值,LCD实时 显示预置增益值并输出有效值。其系统总体设计框图如图1所示。3 器件选型及理论分析
3.1 输入级电路运放选型
由于该电路噪声主要取决于第一级放大器。所以选择第一级运放成为决定噪声大小的关键。电压反馈型(VFB)运算放大器具有同相和反向输人端阻抗基本相同 (均为高阻),低噪声,更好的直流特性,增益带宽积为常数。反馈电阻的取值自由等特点:而电流反馈型(CFB)运算放大器则具有同相输入端为高阻阻,反向 输入端为低阻抗,带宽不受增益影响,压摆率更快,反馈电阻的取值有限制等特点。由此看出,CFB放大器适用于那些需要压摆率快、低失真和可设置增益而不影 响带宽的电路;而VFB放大器则适用于那些需要低调电压、低噪声的电路。因此选用电压反馈型运放THS4011作为前级输入。THS4011是一款高速低 噪声运算放大器,其带宽为290 MHz,压摆率为310 V/μs,输入噪声为3.2 峰值检波电路
峰值检波电路由二极管电路和电压跟随器组成。其工作原理:当输入电压正半周通过时,检波管 VU2导通,对电容C1、C2充电,直到到达峰值。三极管的基极由FPGA控制,产生1Oμs的高电平使电容放电,以减少前一销租频率测量对后一频率测量的影 响,提高幅值测量精度。其中Vu1为常导通,以补偿VU2上造成的压降。适当选择电容值,使得电容放电速度大于充电速度,这样电容两端的电压可保持在最大 电压处,从而实现峰值检波。
该电路能够检测宽范围信号频率,较低的被测信号频率,检波纹波较大,但通过增加小电容和大电容并联构成的电容池可滤除纹波。而后级隔离,则增加由OPA277构成的射极跟随器,如图3所示。4 系统软件设计
4.1 程序部分设计
系统软件设计遵循结构化和层次化原则,由一个主程序及若干子程序构成。主程序通过调用子程序控制子程序间的时序,从而使整个程序正常运行。系统软件设计部 分由单片机和FPGA组成。单片机主要完成读取键值、控制增益和显示功能。而FPGA则作为总线控制器,管理键盘、液晶和A/D转换器与单片机之间的数据 交换。以Ouartus II 7.2为设计环境,用Verilog HDL硬件描述语言编程,完成各功能模块的设计,并仿真测试设计好的各个模块,再将各个模块相互连接。程序以按键中断为主线,以各项功能为分支,图4为程 序流程。4.2 FPGA部分设计
FPGA主要完成A/D、D/A转换器的串并转换。采用12位D/A转换器TLV5618,该器件是串行接口,大大节约系统端口资源,但MCU的P0、 P2端口是并行口,咐瞎与串行器件的时序匹配较复杂,用静态口P1端口模拟串行口时序又会占用MCU很多处理时间,影响系统效率。
为使MCU对串行器件操作简单,把串行时序在FPGA中用状态机描述,同时该控制状态机又对MCU提供P0口、CS、WR的微机标准时序接口形式,这样MCU只需选中相应地址,就可写入所要得到的电压数据,状态机会完成串并转换。
以串行接口时序将数据写入器件并锁存,与写IO端口操作一样简单方便,而D/A转换器模块的输出端既可得到相应输出电压,又达到控制增益的目的。
AGC部分采用循环结构,将A/D转换采样得到的数据与预设值循环相比较,再通过D/A转换控制增益倍数,从而实现自动增益控制。5 测试方案及测试数据
该系统使用专门的测试仪器,包括单片机仿真器、双踪示波器、PC机、多功能函数信号发生器和交流电压表等。调节输入信号的幅值和频率,结合示波器,测试宽 带放大器的增益范围以及通频带。测试结果表明,宽带放大器总增益调节范围为-6~70 dB。-3 dB通频带为40 Hz~15 MHz。将输入信号频率同定,改变输入电压幅值。记录输入电压和输出电压的最大值和最小值。结果表明,AGC动态范围大于60 dB。将输入端短接,设置不同的电压放大倍数,测量输出电压。结果表明,输出电压噪声小于300 mV。6 结束语
宽带放大器以可编程增益放大器THS7001和可变增益放大器AD603为核心,利用数字技术实现增益的步进和预置。总增益范围为-6~70 dB,通频带为40.Hz~15 MHz,AGC动态范围达到60 dB。前置放大器采用低噪声电压反馈型运放THS4011,大大提高输人电阻。后级功率放大采用电流型反馈运放AD811,有效提高系统的带负载能力。系 统采用多种抗干扰措施,并结合软件修正,实现较高的精度,具有良好的噪声,线性性能以及较低的功耗。系统界面友好,操作简单,经测试已投入应用。
㈡ 怎么设计一个高频宽带功率放大器
电源电压:VCC=+3V,VSS=-3V负载电容:2pf静态功耗:<=20mW工作温度:开环直流增益运坦:>=60dB相位裕度:>=30V/公模抑制比:>=60dB输入失调电压:<=20uV工作温度范围i:自拟温度漂告陪移:<=20uV/°CESD保护电路:√旁友桐
㈢ 急 急 求大神帮忙设计一个射频宽带放大器毕业设计
恩,可行的,就说的
㈣ 如何设计一个直流电压放大器
放大电路的设计还要看信号源的情搜运况,不吵漏搏是一个5000倍就能表述清楚的,信号源是1uV和1mV的设计方法不一样。
用单电源升祥运放 AD8601做一个同相电压放大电路,如下图,R1 =1K R2=1K,Rf=29K,低电压时,有一点误差
㈤ 设计一个增益可自动变换的直流放大器
不用单片机做显示,您是有多得闲啊?
㈥ 电子设计大赛报告论文
电子设计大赛报告论文
随着人们自身素质提升,报告的使用成为日常生活的常态,多数报告都是在事情做完或发生后撰写的。我们应当如何写报告呢?下面是我为大家收集的电子设计大赛报告论文,欢迎大家分享。
摘要: 突出重点。电路主要由哪几部分构成,针对某一技术难题,本组的解决方案。最后总结本设计的总体特点(稳定性、可控性、带宽....),完成/基本完成了全部基本功能及扩展功能。本作品基于压控对数放大器设计,由前级放大模块、增益控制模块、......
关键词: 比较器正弦波—方波转换电路……
一、总体方案设计
列些出设计功能,具体指标。
设计并制作一个宽带直流放大器及所用的直流稳压电源
(1)电压增益AV≥40dB,输入电压有效值Vi≤20mV。AV可在0~40dB范围内手动连续调节。
(2)最大输出电压正弦波有效值Vo≥2V,输出信号波形无明显失真。
(3)3dB通频带0~5MHz;在0~4MHz通频带内增益起伏≤1dB。
(4)放大器的输入电阻≥50,负载电阻(50±2)。
(5)设计并制作满足放大器要求所用的直流稳压电源。
根据要求,总体电路可由三个模块构成:1.模块一名称;2.模块二名称;3.模块三名称。具体说明每一模块的功能。
二、方案比较/论证(针对框图中的每一模块的内容进行方案比较)
2.1模块一名称
方案一:……
方案二:……
方案三:……
总体讨论上述方案的利弊,做出本设计的选择。
2.2模块二名称
方案一:……
方案二:……
方案三:……
总体讨论上述方案的利弊,做出本设计的选择。
2.3模块三名称
方案一:……
方案二:……
方案三:……
总体讨论上述方案的利弊,做出本设计的选择。
2.1可控增益放大器
方案一: 采用场效应管或三极管控制增益。主要利用场效应管的可变电阻区(或三极管等效为压控电阻)实现增益控制,本方案由于采用大量分立元件,电路复杂,稳定性差。
方案二: 为了易于实现最大60dB增益的调节,可以采用高速乘法器型D/A实现,比如AD7420。利用D/A转换器的`VRef作信号的输入端,D/A的输出端做输出。用D/A转换器的数字量岩猛输入端控制传输衰减实现增益控制。此方案简单易行,精确度高,但经实验知:转化非线性误差大,带宽只有几kHz,而且当信号频率较高时,系统容易发生自激,因此未选此方案。
方案三: 根据题目对放大电路增益可控的要求,考虑直接选取可调增益的运放实现(如运放VCA810)。其特点是以dB为单位进行调节,可调增益±40dB,可以用单片机方便地预置增益。
方案三电路集成度高、条理较清晰、控制方便、易于数字化用单片机处理。所以本系统采用方案三。
三、理论分析及参数计算
根据设计要求,针对上述所选方案,进行指慎理粗逗桥论分析及整体电路主要外围元器件参数计算。
3.1带宽增益积
带宽增益积(GBP)是这是用来简单衡量放大器的性能的一个参数,这个参数表示增益和带宽的乘积。按照放大器的定义,这个乘积是一定的。题目中要求放大器最大电压增益AV≥60dB,即Gain≥1000V/V。
放大器的通频带0~10MHz,所以本放大器的带宽增益积为GBP=1000*10M=10G
单个放大器是很难达到10G的GBP,所以我们考虑多级放大器级联。
经过查阅手册,OPA691的GBP为450M,级联上后级的VCA810和THS3120,足以达到题目要求。
四、单元模块设计
4.1模块一电路:
根据理论分析结果设计电路,进行器件选择,(接口电路的连接),对所选电阻、电容、运放等的参数大小进行分析计算,描述模块中信号的流向、变化,画出具体电路图。
4.2模块二电路:
.......
4.3模块三电路:
.......
4.1压控增益电路
可控增益调节部分我们使用压控增益放大器VCA810,VCA810在宽频带工作模式下,增益控制范围为-40dB~+40dB,且控制电压与增益dB数成线性关系,满足设计要求。其中1脚为了匹配输入阻抗并接了50
的电阻,8脚接25的偏置电阻,其中5脚接500的负载电阻.......如图2所示。
五、系统测试及数据分析
5.1测试方法
5.1测试方法
(1)用示波器和信号发生器手动扫描测带宽。
(2)用串入电阻法测输入电阻10MHz带宽测试结果:
打开带宽控制开关选择不同带宽进行设置增益40dB,Vinp-p=3mV,观察示波器测试信号源的频率及步进,并记录电压峰值。
5.2测试仪器
5.2测试仪器
(1)泰克TDS100260M数字示波器
(2)RIGOLDS102220M信号源
5.3测试数据(根据要求列出各个表格,列出实际测量实际值及理论值,最好能进行多次测量,保证数据的确切性,不是偶然的。)
5.4数据分析(根据5.3的各表格,分析电路指标是否达到题目要求)
由表1可以看出放大器在预置带宽为5M的时候,0~4M通频带内很平坦,最大起伏出现在3M、增益40dB的时候,放大dB数为,,完全符合题目要求中通频带内增益起伏≤1D的指标。
由表2可知,系统可以实现电压预置并可以实现5dB的步进,而且可以输出9V左右的有效值。
六、结论
总结达到那些指标:
总结未达到那些指标,分析可能原因。
6.1作品达到了题目所有基本和部分扩展功能及指标的要求:
(1)最大电压增益Av≥60dB,输入电压有效值Vi≤10mV。
(2)在Av=40dB时,输出端噪声电压的峰-峰值VONPP≤0.03V。
(3)最大输出电压正弦波有效值Vo≥5V,输出信号波形无明显失真。
(4)电压增益Av可预置并显示,预置范围为0~60dB,步距为5dB并且可以手动连续调节);放大器的带宽可预置并显示(5MHz、10MHz两点)。在通频带内增益起伏≤1dB。
(5)通过制作开关电源来提高电源效率。
(6)本设计多使用集成芯片,以较低的成本实现了题目要求。
6.2存在问题及改进措施:
;㈦ 09电赛c题 宽带直流放大器 通频带内增益起伏控制!!
首先是运放的选择,如果打算做高频类的灶衡题目,我想大家一定准备了AD603这个比较经典的运放。带通是能满足了,这是一个可变增益的运放,当然还有其他的普通运放,比如AD8065,我们的示波器用到的,以及OP37,CLC221A(网上有他的电路,但是相位的相应怎么样,能满足线性吗?)等在基本参数上都可以满足,可以适用的芯片很大,可以去网上参考一下示波器,频谱仪,无线接收的前级设计。运放不要选择正好10M带通的运放。一半要20M以上带通的。对于温漂有要求,温漂一定要小。
在设计电路的时候我有一点经验,那就是要擅长于使用电感,在做这类题目的时候,国内的学生似乎不太会考虑使用电感,可能怕电路不稳定慧轮产生振荡,其实你们可以摈弃这些观点,适当地使用是电感,可以起到很多意想不定到的效果,在高频的抑制,相位的补偿都有作用。还有一点就是不要使用太低的电源电压给运放供电,2V的有效值,一般要5V以上的电源供电,这样处理起来很方便。同时防止靠轨太近引起的信号失真。10M的带宽,做完后测隐碧做试过程中按照实际的效果采样高频和低频的补偿措施,以使信号在通频带内的增益更加平坦。
㈧ 什么是宽带直流放大器
在现代电子设备、通讯设备和科研生产中常需要利用放大电路将传感器输出的微弱信号或通信接收端接收到空中微弱的信号进行提取、放大。只有将信号放大到一定程度才能满足后级设备的要求,使分析结果正确。同时很多设备还要求具有一定输出功率,才能驱动后级设备或使通信的发射端将信号有效传输到接收端。然而面对多种多样的放大要求塌锋昌,现在的放大电路难以在频带、增益动态范围、功率等参数满足设计要求。为此,这团扒里设计一种宽带直流放大器,该直流放大器的频率从0 Hz到10 MHz,增益调节范围为0~75 dB,带宽可设置为5 MHz或10 MHz两种,后级功率放大电路可输出20 V的峰峰值。该系统成本低廉,精度高,满足一般生产科研实验要求,可应用于多种场合,具有推广性。
1 系统设计方案
1.1 可控增益放大
可控增益放大由可变增益放大器(VGA)AD603实现的。AD603具有单通道基缓、宽频带、低噪音、低畸变、高增益精度等特性,其内部是由R-2R梯形电阻网络和固定增益放大器构成,施加在其梯型网络输入端的信号经衰减后,由固定增益放大器输出,增益量是由增益控制接口参考电压决定;而该参考电压是通过单片机进行运算并控制D/A转换器输出其控制电压来获得的,从而实现较精确的数字控制。此外AD603能提供由直流到30 MHz以上的工作带宽。电路集成度高,易于单片机控制,稳定性好,满足系统要求。
1.2 后级功率放大
采用多片集成运算放大器并联组成后级功率放大电路,通过改变放大器的增益实现不同倍数放大,多片放大器并联可提供较大的输出电流。多片集成运算放大器并联放大电路结构较为简单,易于实现,且输出波形可无明显失真。该系统选用高压低失真电流反馈型放大器THS-3091,最大驱动电流可达350 mA,3片THS3091最大可提供为l050mA的电流,完全满足系统设计要求。
1.3 滤波电路
根据系统设计要求,需要一个5 MHz和10 MHz的低通滤波器,一般集成滤波器和有源滤波电路都难以达到上述带宽要求,且价格高。因此,该方案采用七阶无源椭圆滤波器,该滤波器具有结构简单、成本低廉、带宽大,稳定性好,波动小等特点。并利用滤波器设计软件filter solution快速设计出通带波动小阻带衰减大的滤波器。
2 系统硬件电路设计
系统总体设计方案如图1所示,该系统由前级信号调理电路、可控增益电路、加法器电路、滤波选择电路、后级程控放大电路和后级功率放大电路组成。
该系统设计的前级信号调理电路可对输入信号进行阻抗匹配以及10倍放大,以提高输入信号的信噪比;可控增益放大电路是以AD603为核心组成的,可对输入信号实现-10~+30 dB的放大;加法器电路可实现对信号的零点漂移的有效调节,从而抑制零点漂移;以继电器为核心的滤波器选择电路可实现对信号的带宽为5 MHz或1O MHz的选择;由MAX309和THS309l组成的后级程控放大电路可对信号分别实现0.01,0.5,5,10倍的放大;功率放大电路由3片THS3091并联构成,驱动50 Ω负载,输出信号峰-峰值可达20 V且无明显失真。
2.1 可控增益放大电路
可控增益放大电路是以可变增益放大器AD603为核心,信号直接输入AD603的引脚3,引脚2输入偏置电压,并联10 μF电容构成低通滤波器滤除输入电压噪音,引脚1的电平通过16位高精度D/A转换器MAX541来调节增益放大,该的基准电压是MAX6225的输出电压。AD603的5引脚与7引脚短接使其工作增益范围为-10~+30 dB,带宽为90 MHz状态下,而其供电电压通过10μF和0.1μF并联接地去耦,提高系统稳定,抑制自激,如图2所示。
2.2 后级程控放大电路
后级程控放大电路主要由模拟开关MAX309和THS3091构成,MAX309导通电阻约100Ω,可通过10 MHz以上的信号,容性负载小,使用方便,易于编程,可通过FPGA对MAx309进行开关选通,前级为同相放大,放大倍数为2倍,有利于信号隔离和传输,提高驱动负载能力,该电路可对输入信号实现0.01、0.1、1、10倍的放大,如图3所示。
2.3 后级功率放大电路
后级功率放大电路由3片THS3091并联构成,±15V供电时,最大输出电压峰峰值可达20 V,根据该器件数据资料,THS3091输出电流最大可达350 mA,为了达到输出功率的要求,使用3个THS309l进行并联,负载电阻由4只200Ω电阻并联组成。信号由同相端输入,增益设置为3.8倍,起到隔离和放大信号的作用。如图4所示。
3 系统软件设计
本系统软件部分由以单片机为核心的最小系统构成,进入欢迎界面后通过ENTER键可进入主菜单界面。通过不同的按键可选择不同的软件设置,系统软件设计有两档校准放大电路中零点漂移,自动校准和手动校准。按键2可对放大系统带宽进行选择,按键3可选择增益调节方式为手动连续调节,按键4可对电压增益进行预置,预置范围为0~75 dB,步距为5 dB。对系统所有设置可实时显示,人机交互界面友好,软件设计详细流程如图5所示。
4 测试方案与测试结果
4.1 测试条件
对该带宽直流放大器在28℃室温的环境下进行测试,其而测试仪器及型号如下:直流稳压电源,SGl733SB3A;60 M示波器,Tektronix TDS1002;数字信号源,Tektronix AFG310;PC机,联想WindOWS XP;仿真机,E51/S伟福仿真机。
4.2 测试结果
表1给出在放大器的通频带为5 MHz,输入信号有效值为20 mV,预置增益放大为40 dB的测试条件下,改变其输入信号的频率,所测得的输出信号的峰峰值;表2给出在放大器的通频带为10 MHz,输入信号有效值为5 mV,预置增益放大为60 dB的测试条件下,改变其输入信号的频率,所测得的输出信号的峰峰值。其最大输出电压峰峰值为20 V。
5 结束语
以VGA AD603为放大器核心的宽带直流放大器,实现了对0~10 MHz正弦信号的0~75 dB放大,带宽可设置为5 MHz或10 MHz两种,在50Ω负载下最大输出电压峰峰值为20 V。如果采用MSP430F449代替以单片机AT89C55WD和FPGA构成的最小系统的控制可以增加性价比,同时可进一步减小噪声。后级功率放大电路可采用±18 V代替±15 V,可进一步将信号的峰峰值提高到28 V以上,同时后级应采取一些保护措施(如加风扇)减小后级电路的温度,增强系统稳定性。该系统设计采用PCB制作,可增加抗干扰性,抑制自激,具有广泛的市场空间。
㈨ 宽带直流放大器的设计报告
如何制作宽带直流放大器1.基本要求(1)电压增益AV≥40dB,输入电压有效值Vi≤20mV。AV可在0~40dB范围内手动连续调节。(2)最大输出电压正弦波有效值Vo≥2V,输出信号波形无明显失真。(3)3dB通频带余卖0~5MHz;在0~4MHz通频带内增益起伏≤1dB。(4)放大器的输入电阻≥50W,负载电阻(50±2)W。(5)设计并制作满足放大器要求所用的直流稳压电源。2.发挥部分(1)最大电压增益AV≥60dB,输入电压有效值Vi≤10 mV。(2)在AV=60dB时,输出端噪声电压的峰-峰值VONPP≤0.3V。(3)3dB通频带0~10MHz;在0~9MHz通频带内增益起伏≤1dB。(4)最大输出电压正弦波有效值Vo≥10V,输出信号波形无明显失真。 (5)进一步降低输入电压提高放大器的电压增益。(6)电压增益AV可预置并显示,预置范围为0~60dB,步距为5dB(也可以连续调节);放大器的带宽可预置并显示(至少5MHz、 10MHz 两点)。(7)降低放大器的制作成本,提高电源效率。(8)其他(例如改善放大器性能的其它措施等)。三、说明1.宽带直流放大器幅频特性示意图如图1所示。 2.负载电阻应预留测试用检测口和明显标志,如不符合(50±2)W的电阻值要求,则酌情扣除最大输出电压有效值项的所得分数。3.放大器要留有必要的测试点。建议的测试框图如乱和图2所示,可采用信号发生器与示波器/交、直流电压表组合的静态法或扫频仪进行幅频特性测量。四、评分标准设计报告项 目主要内容分数系统方案比较与选择方案描述2理论分析与计算带宽增益积通竖陪逗频带内增益起伏控制线性相位抑制直流零点漂移放大器稳定性9电路与程序设计电路设计8测试方案与测试结果测试方案及测试条件测试结果完整性测试结果分析8设计报告结构及规范性摘要设计报告正文的结构图表的规范性3总分30基本要求实际制作完成情况50发挥部分完成第(1)项7完成第(2)项2完成第(3)项7完成第(4)项6完成第(5)项12完成第(6)项5完成第(7)项6其他