导航:首页 > 编程语言 > a寻路算法代码

a寻路算法代码

发布时间:2023-03-25 16:12:06

① A*算法——启发式路径搜索

A*是一种路径搜索算法,比如为游戏中的角色规划行动路径。

A* 算法的输入是, 起点(初始状态) 终点(目标状态) ,以及两点间 所有可能的路径 ,以及涉及到的 中间节点(中间状态) ,每两个节点间的路径的 代价

一般还需要某种 启发函数 ,即从任意节点到终点的近似代价,启发函数能够非常快速的估算出皮好闭该代价值。

输出是从 起点到终点的最优路径 ,即代价最小。同时,好的启发函数将使得这一搜索运算尽可能高效,即搜索尽量少的节点/可能的路径。

f(n)=g(n)+h(n)

f(n) 是从初始状态经由状态n到目标状态的代价估计

g(n) 是在状态空间中从初始状态到状态n的实际代价

h(n) 是从状态n到目标状态的最佳路径的估计代价

A*算法是从起点开始,检查所有可能的扩展点(它的相邻点),对每个点计算g+h得到f,在所有可能的扩展点中,选择f最小的那个点进行扩展,即计算该点的所有可能扩展点的f值,并将这些新的扩展点添加到扩展点列表(open list)。当然,忽略已经在列表中的点、已经考察燃裂过的点。

不断从open list中选择f值最小的点进行扩展,直到到达目标点(成功找到最优路径),或者节点用完,路径搜索失败。

算法步骤:

参考

A* 算法步骤的详细说明请参考 A*寻路算法 ,它包含图文案例清楚的解释了A*算法计算步骤的一些细节,本文不再详细展开。

看一下上面参考文档中的案例图,最终搜索完成时,蓝色边框是close list中的节点,绿色边框是open list中的节点,每个方格中三个数字,左上是f(=g+h),左下是g(已经过路径袜旦的代价),右下是h(估计未经过路径的代价)。蓝色方格始终沿着f值最小的方向搜索前进,避免了对一些不好的路径(f值较大)的搜索。(图片来自 A*寻路算法 )

现在我们可以理解,A*算法中启发函数是最重要的,它有几种情况:

1) h(n) = 0
一种极端情况,如果h(n)是0,则只有g(n)起作用,此时A*演变成Dijkstra算法,这保证能找到最短路径。但效率不高,因为得不到启发。

2) h(n) < 真实代价
如果h(n)经常都比从n移动到目标的实际代价小(或者相等),则A*保证能找到一条最短路径。h(n)越小,A*扩展的结点越多,运行就得越慢。越接近Dijkstra算法。

3) h(n) = 真实代价
如果h(n)精确地等于从n移动到目标的代价,则A*将会仅仅寻找最佳路径而不扩展别的任何结点,这会运行得非常快。尽管这不可能在所有情况下发生,你仍可以在一些特殊情况下让它们精确地相等(译者:指让h(n)精确地等于实际值)。只要提供完美的信息,A*会运行得很完美,认识这一点很好。

4) h(n) > 真实代价
如果h(n)有时比从n移动到目标的实际代价高,则A*不能保证找到一条最短路径,但它运行得更快。

5) h(n) >> 真实代价
另一种极端情况,如果h(n)比g(n)大很多,则只有h(n)起作用,A*演变成BFS算法。

关于启发函数h、Dijkstra算法、BFS(最佳优先搜索)算法、路径规划情况下启发函数的选择、算法实现时List的数据结构、算法变种等等更多问题,请参考: A*算法

② A* 寻路算法

A*算法
�6�1 启发式搜索
– 在搜索中涉及到三个函数
�6�1 g(n) = 从初始结点到结点n的耗费
�6�1 h(n) = 从结点n到目的结点的耗费评估值,启发函数
�6�1 f(n)=g(n)+h(n) 从起始点到目的点的最佳评估值
– 每次都选择f(n)值最小的结点作为下一个结点,
直到最终达到目的结点
– A*算法的成功很大程度依赖于h(n)函数的构建
�6�1 在各种游戏中广泛应用 Open列表和Closed列表
– Open列表
�6�1 包含我们还没有处理到的结点
�6�1 我们最开始将起始结点放入到Open列表中
– Closed列表
�6�1 包含我们已经处理中衫过的结点
�6�1 在算法启动时,Closed列表为空 A* 算法伪代码初始化OPEN列表
初始化CLOSED列表
创建目的结点;称为node_goal
创建起始结点;称为node_start
将node_start添加到OPEN列表
while OPEN列表非空{
从OPEN列表中取出f(n)值最低的结点n
将结点n添加到CLOSED列表中
if 结点n与node_goal相等then 我们找到了路径,程序返回n
else 生成结点n的每一个后继结点n'
foreach 结点n的后继结点n'{
将n’的父结点设置为n
计算启发式评估函数h(n‘)值,评估从n‘到node_goal的费用
计算g(n‘) = g(n) + 从n’到n的开销
计算f(n') = g(n') + h(n')
if n‘位于OPEN或者CLOSED列表弯嫌and 现有f(n)较优then丢弃n’ ,处理后继n’
将结点n‘从OPEN和CLOSED中删除
添加结点n‘到OPEN列表
}
}
return failure (我们已经搜索了所有的结点卖闹腔,但是仍然没有找到一条路径)

③ 关于VB中A*寻路算法的提问

定理:穿越于一组互不相交的多边形障碍物S之纳租间、从Pstart通往Pgoal的任何一条最短路径,都是一条多边形路径,其中所有的内部顶点都是S的顶点。
推广:所有最短路径问题。
结论:只有普遍适用的算法,没有普遍适用的代码。
补充:只有问题实例化才能写出适用代码。

你所遇到的可不只是寻路问题,二维寻路相对简洞升兆单点,我猜测你的问题产生在“碰撞”上,建议你多学习一下“计算几何学”、“计算机图形学”、“机器人运动学”等,当然,编程的基本功也很重要。其实,带有笑键运动的游戏编程是很复杂的。你也可以将你的程序包发给我等我有时间帮你看看。

④ 如何基于Cocos2d-x v3.x实现A星寻路算法

当你点击地图某处时,猫会沿着你点击的方向跳到相邻的方块上。

我们想对程序做修改,让猫持续的往你点击的方块方向前进,就像许多RPGs或者point-and-click冒险类游戏。

让雀巧我们看下控制触摸事件代码的工作原理。如果你打开HelloWorldScene.cpp文件,你将看到像下面这样去实现触摸操作:

auto listener = EventListenerTouchOneByOne::create();
listener->setSwallowTouches(true);
listener->onTouchBegan = [this](Touch *touch, Event *event){
if (_gameOver)
{
return false;
}
Point touchLocation = _tileMap->convertTouchToNodeSpace(touch);
_cat->moveToward(touchLocation);
return true;
};
_eventDispatcher->(listener, this);
你可以看到这里只是对猫精灵调用了一个方法,让猫在方块地图上往你点击的地方移动。

我们现在要做的是修改在CatSprite.m文件中的以下方法,寻找到达该点的最短路径,并且开始前进:

void CatSprite::moveToward(const Point &target)
{
// Figure out the shortest path to the target, and start following it!
}

创建ShortestPathStep类
我们开始创建一个内部类,代表路径上的一步顷枣键操作。在这种情况下,它是一个方块和由A星算法计算出来的的F,G和岩明H scores。

class ShortestPathStep : public cocos2d::Object
{
public:
ShortestPathStep();
~ShortestPathStep();
static ShortestPathStep *createWithPosition(const cocos2d::Point &pos);
bool initWithPosition(const cocos2d::Point &pos);
int getFScore() const;
bool isEqual(const ShortestPathStep *other) const;
std::string getDescription() const;
CC_SYNTHESIZE(cocos2d::Point, _position, Position);
CC_SYNTHESIZE(int, _gScore, GScore);
CC_SYNTHESIZE(int, _hScore, HScore);
CC_SYNTHESIZE(ShortestPathStep*, _parent, Parent);
};

现在添加以下代码到CatSprite.cpp文件的顶部。

CatSprite::ShortestPathStep::ShortestPathStep() :
_position(Point::ZERO),
_gScore(0),
_hScore(0),
_parent(nullptr)
{
}
CatSprite::ShortestPathStep::~ShortestPathStep()
{
}
CatSprite::ShortestPathStep *CatSprite::ShortestPathStep::createWithPosition(const Point &pos)
{
ShortestPathStep *pRet = new ShortestPathStep();
if (pRet && pRet->initWithPosition(pos))
{
pRet->autorelease();
return pRet;
}
else
{
CC_SAFE_DELETE(pRet);
return nullptr;
}
}
bool CatSprite::ShortestPathStep::initWithPosition(const Point &pos)
{
bool bRet = false;
do
{
this->setPosition(pos);
bRet = true;
} while (0);
return bRet;
}
int CatSprite::ShortestPathStep::getFScore() const
{
return this->getGScore() + this->getHScore();
}
bool CatSprite::ShortestPathStep::isEqual(const CatSprite::ShortestPathStep *other) const
{
return this->getPosition() == other->getPosition();
}
std::string CatSprite::ShortestPathStep::getDescription() const
{
return StringUtils::format("pos=[%.0f;%.0f] g=%d h=%d f=%d",
this->getPosition().x, this->getPosition().y,
this->getGScore(), this->getHScore(), this->getFScore());
}

正如所见,这是一个很简单的类,记录了以下内容:
- 方块的坐标
- G值(记住,这是开始点到当前点的方块数量)
- H值(记住,这是当前点到目标点的方块估算数量)
- Parent是它的上一步操作
- F值,这是方块的和值(它是G+H的值)

这里定义了getDescription方法,以方便调试。创建了isEquals方法,当且仅当两个ShortestPathSteps的方块坐标相同时,它们相等(例如它们代表着相同的方块)。

创建Open和Closed列表
打开CatSprite.h文件,添加如下代码:

cocos2d::Vector<ShortestPathStep*> _spOpenSteps;
cocos2d::Vector<ShortestPathStep*> _spClosedSteps;

检查开始和结束点
重新实现moveToward方法,获取当前方块坐标和目标方块坐标,然后检查是否需要计算一条路径,最后测试目标方块坐标是否可行走的(在这里只有墙壁是不可行走的)。打开CatSprite.cpp文件,修改moveToward方法,为如下:

void CatSprite::moveToward(const Point &target)
{
Point fromTileCoord = _layer->tileCoordForPosition(this->getPosition());
Point toTileCoord = _layer->tileCoordForPosition(target);
if (fromTileCoord == toTileCoord)
{
CCLOG("You're already there! :P");
return;
}
if (!_layer->isValidTileCoord(toTileCoord) || _layer->isWallAtTileCoord(toTileCoord))
{
SimpleAudioEngine::getInstance()->playEffect("hitWall.wav");
return;
}
CCLOG("From: %f, %f", fromTileCoord.x, fromTileCoord.y);
CCLOG("To: %f, %f", toTileCoord.x, toTileCoord.y);
}

编译运行,在地图上进行点击,如果不是点击到墙壁的话,可以在控制台看到如下信息:

From: 24.000000, 0.000000
To: 20.000000, 0.000000
其中 **From** 就是猫的方块坐标,**To**就是所点击的方块坐标。

实现A星算法
根据算法,第一步是添加当前坐标到open列表。还需要三个辅助方法:
- 一个方法用来插入一个ShortestPathStep对象到适当的位置(有序的F值)
- 一个方法用来计算从一个方块到相邻方块的移动数值
- 一个方法是根据"曼哈顿距离"算法,计算方块的H值

打开CatSprite.cpp文件,添加如下方法:

void CatSprite::insertInOpenSteps(CatSprite::ShortestPathStep *step)
{
int stepFScore = step->getFScore();
ssize_t count = _spOpenSteps.size();
ssize_t i = 0;
for (; i < count; ++i)
{
if (stepFScore <= _spOpenSteps.at(i)->getFScore())
{
break;
}
}
_spOpenSteps.insert(i, step);
}
int CatSprite::computeHScoreFromCoordToCoord(const Point &fromCoord, const Point &toCoord)
{
// 这里使用曼哈顿方法,计算从当前步骤到达目标步骤,在水平和垂直方向总的步数
// 忽略了可能在路上的各种障碍
return abs(toCoord.x - fromCoord.x) + abs(toCoord.y - fromCoord.y);
}
int CatSprite::(const ShortestPathStep *fromStep, const ShortestPathStep *toStep)
{
// 因为不能斜着走,而且由于地形就是可行走和不可行走的成本都是一样的
// 如果能够对角移动,或者有沼泽、山丘等等,那么它必须是不同的
return 1;
}

接下来,需要一个方法去获取给定方块的所有相邻可行走方块。因为在这个游戏中,HelloWorld管理着地图,所以在那里添加方法。打开HelloWorldScene.cpp文件,添加如下方法:

PointArray *HelloWorld::(const Point &tileCoord) const
{
PointArray *tmp = PointArray::create(4);
// 上
Point p(tileCoord.x, tileCoord.y - 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 左
p.setPoint(tileCoord.x - 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 下
p.setPoint(tileCoord.x, tileCoord.y + 1);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
// 右
p.setPoint(tileCoord.x + 1, tileCoord.y);
if (this->isValidTileCoord(p) && !this->isWallAtTileCoord(p))
{
tmp->addControlPoint(p);
}
return tmp;
}

可以继续CatSprite.cpp中的moveToward方法了,在moveToward方法的后面,添加如下代码:

bool pathFound = false;
_spOpenSteps.clear();
_spClosedSteps.clear();
// 首先,添加猫的方块坐标到open列表
this->insertInOpenSteps(ShortestPathStep::createWithPosition(fromTileCoord));
do
{
// 得到最小的F值步骤
// 因为是有序列表,第一个步骤总是最小的F值
ShortestPathStep *currentStep = _spOpenSteps.at(0);
// 添加当前步骤到closed列表
_spClosedSteps.pushBack(currentStep);
// 将它从open列表里面移除
// 需要注意的是,如果想要先从open列表里面移除,应小心对象的内存
_spOpenSteps.erase(0);
// 如果当前步骤是目标方块坐标,那么就完成了
if (currentStep->getPosition() == toTileCoord)
{
pathFound = true;
ShortestPathStep *tmpStep = currentStep;
CCLOG("PATH FOUND :");
do
{
CCLOG("%s", tmpStep->getDescription().c_str());
tmpStep = tmpStep->getParent(); // 倒退
} while (tmpStep); // 直到没有上一步
_spOpenSteps.clear();
_spClosedSteps.clear();
break;
}
// 得到当前步骤的相邻方块坐标
PointArray *adjsteps = _layer->(currentStep->getPosition());
for (ssize_t i = 0; i < adjSteps->count(); ++i)
{
ShortestPathStep *step = ShortestPathStep::createWithPosition(adjSteps->getControlPointAtIndex(i));
// 检查步骤是不是已经在closed列表
if (this->getStepIndex(_spClosedSteps, step) != -1)
{
continue;
}
// 计算从当前步骤到此步骤的成本
int moveCost = this->(currentStep, step);
// 检查此步骤是否已经在open列表
ssize_t index = this->getStepIndex(_spOpenSteps, step);
// 不在open列表,添加它
if (index == -1)
{
// 设置当前步骤作为上一步操作
step->setParent(currentStep);
// G值等同于上一步的G值 + 从上一步到这里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// H值即是从此步骤到目标方块坐标的移动量估算值
step->setHScore(this->computeHScoreFromCoordToCoord(step->getPosition(), toTileCoord));
// 按序添加到open列表
this->insertInOpenSteps(step);
}
else
{
// 获取旧的步骤,其值已经计算过
step = _spOpenSteps.at(index);
// 检查G值是否低于当前步骤到此步骤的值
if ((currentStep->getGScore() + moveCost) < step->getGScore())
{
// G值等同于上一步的G值 + 从上一步到这里的成本
step->setGScore(currentStep->getGScore() + moveCost);
// 因为G值改变了,F值也会跟着改变
// 所以为了保持open列表有序,需要将此步骤移除,再重新按序插入
// 在移除之前,需要先保持引用
step->retain();
// 现在可以放心移除,不用担心被释放
_spOpenSteps.erase(index);
// 重新按序插入
this->insertInOpenSteps(step);
// 现在可以释放它了,因为open列表应该持有它
step->release();
}
}
}
} while (_spOpenSteps.size() > 0);
if (!pathFound)
{
SimpleAudioEngine::getInstance()->playEffect("hitWall.wav");
}

添加以下方法:

ssize_t CatSprite::getStepIndex(const cocos2d::Vector<CatSprite::ShortestPathStep *> &steps, const CatSprite::ShortestPathStep *step)
{
for (ssize_t i = 0; i < steps.size(); ++i)
{
if (steps.at(i)->isEqual(step))
{
return i;
}
}
return -1;
}

⑤ 如何用Swift实现A*寻路算法

A*算法
?? 启发式搜索
– 在搜索中涉及到三个函数
?? g(n) = 从初始结点到结点n的耗费
?? h(n) = 从结点n到目的结点的耗费评估值,启发函数
?? f(n)=g(n)+h(n) 从起始点到目的点的最佳评估值
– 每次都选择f(n)值最小的结点作为下一个结点,
直到最终达到目的结点
– A*算法的成功很大程度依赖尺穗于h(n)函数的构建
?? 在各种游戏中广泛应用 Open列表和Closed列表
– Open列表
?? 包含我们还没有处理到的结点
?? 我们最开始将起始结点放入到Open列表中
–陵历卜 Closed列表
?? 包含我们已经处理过的结点
?? 在算法启动时,Closed列表为空 A* 算法伪代码初始化OPEN列表
初始化CLOSED列表
创建目的结点;称为node_goal
创建起始结点;称为node_start
将node_start添加到OPEN列表
while OPEN列表非空{
从OPEN列表中取出f(n)值最低的结点n
将结点n添加到CLOSED列表中
if 结点n与node_goal相等then 我们找到了路径,程序返回n
else 生成结点n的每一个后继结点n'
foreach 结点n的后继结点n'{
将n’烂毕的父结点设置为n
计算启发式评估函数h(n‘)值,评估从n‘到node_goal的费用
计算g(n‘) = g(n) + 从n’到n的开销
计算f(n') = g(n') + h(n')
if n‘位于OPEN或者CLOSED列表and 现有f(n)较优then丢弃n’ ,处理后继n’
将结点n‘从OPEN和CLOSED中删除
添加结点n‘到OPEN列表
}
}
return failure (我们已经搜索了所有的结点,但是仍然没有找到一条路径)

⑥ 梦幻西游自动寻路的寻路算法怎么算

A*寻路算法 A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。
公式表示为: f(n)=g(n)+h(n),
其中f(n) 是节点n从初始点到目标点的估价函数,
g(n) 是在状态空间中从初始节点到n节点的实际代价,
h(n)是从n到目标节点最佳路径的估计代价。
保证找到最短路径(最优解的)条件,关键在于估价函数h(n)的选取:
估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。
如果 估价值>实际值, 搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。
估价值与实际值越接近,估价函数取得就越好。
例如对于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即f=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));这样估价函数f在g值一定的情况下,会或多或少的受估价值h的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijstra算法的毫无无方向的向四周搜索。
茄哗conditions of heuristic
Optimistic (must be less than or equal to the real cost)
As close to the real cost as possible
主要搜索过程:
创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
遍历当前节点的各个节点,将n节点放入CLOSE中,取n节点的子节点X,->算X的估价值->
While(OPEN!=NULL)
{
从OPEN表中取估价值f最小的节点n;
if(n节点==目标节点) break;
else
{
if(X in OPEN) 比较两个X的估价值f //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于OPEN表的估价值 )
更新OPEN表中的估价值; //取最小路径的估价值
if(X in CLOSE) 比较两个X的估价值 //注意是同一个节点的两个不同路径的估价值
if( X的估价值小于CLOSE表的估价值 )
更新CLOSE表中的估价值; 把X节点放入OPEN //取最小路径的估价值
if(X not in both)
求X的估价值;
并将X插入OPEN表中; //还没有排序
}
将n节点插入CLOSE表中;
按照估价值将OPEN表中的节点排序; //实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。
启发式搜索其实有很多的算法,比如:局部择优搜索法、最好优先搜索法等等。当然A*也是。这些算法都使用了启发函数,但在具体的选取最佳搜索节点时的策略不同。象局部择优搜索法,就是在搜索的过程中选取“最佳节点”后舍弃其他的兄弟节点,父亲节点,而一直得搜索下去。这种搜索的结果很明显,由于舍弃了其他的节点,可能也把最好的
节点都舍弃了,因为求解的最佳节点只是在该阶段的最佳并不一定是全局的最佳。最好优先就聪明多了,他在搜索时,便没有舍弃节点(除非该节点是死节点),在每一步的估价
中都把当前的节点和以前的节点的估价值比较得到一个“最佳的节点”。这样可以有效的防止“最佳节点”的丢失。那么A*算法又是一种什么样的算法呢?其实A*算法也是一种最
好优先的算法。只不过要加上一些约束条件罢了。由于在一些问题求解时,我们希望能够求解出状态空间搜索的最短路径,也就是用最快的方法求解问题,A*就是干这种事情的!
我们先下个定义,如果一个估价函数可以找出最短的路径,我们称之为可采纳性。A*算法是一个可采纳的最好优先算法。A*算法的估价函数可表示为:
f'(n) = g'(n) + h'(n)
这里,f'(n)是估价函数,g'(n)是起点到终清源点的最短路径值,h'(n)是n到目标的最断路经的启发值。由于这个f'(n)其实是无法预先知道的,所以我们用前面的估价函数f(n)做
近似。g(n)代替g'(n),但 g(n)>=g'(n)才可(大多数情况下都是满足的,可以不用考虑),h(n)代替h'(n),但h(n)<=h'(n)才可(这一点特别的重要)。可以证明应用这样的估答纳态价
函数是可以找到最短路径的,也就是可采纳的。我们说应用这种估价函数的最好优先算法就是A*算法。哈。你懂了吗?肯定没懂。接着看。
举一个例子,其实广度优先算法就是A*算法的特例。其中g(n)是节点所在的层数,h(n)=0,这种h(n)肯定小于h'(n),所以由前述可知广度优先算法是一种可采纳的。实际也是
。当然它是一种最臭的A*算法。
再说一个问题,就是有关h(n)启发函数的信息性。h(n)的信息性通俗点说其实就是在估计一个节点的值时的约束条件,如果信息越多或约束条件越多则排除的节点就越多,估价函
数越好或说这个算法越好。这就是为什么广度优先算法的那么臭的原因了,谁叫它的h(n)=0,一点启发信息都没有。但在游戏开发中由于实时性的问题,h(n)的信息越多,它的计
算量就越大,耗费的时间就越多。就应该适当的减小h(n)的信息,即减小约束条件。但算法的准确性就差了,这里就有一个平衡的问题。
}

阅读全文

与a寻路算法代码相关的资料

热点内容
maya粒子表达式教程 浏览:84
抖音小视频如何挂app 浏览:283
cad怎么设置替补文件 浏览:790
win10启动文件是空的 浏览:397
jk网站有哪些 浏览:134
学编程和3d哪个更好 浏览:932
win10移动硬盘文件无法打开 浏览:385
文件名是乱码还删不掉 浏览:643
苹果键盘怎么打开任务管理器 浏览:437
手机桌面文件名字大全 浏览:334
tplink默认无线密码是多少 浏览:33
ipaddgm文件 浏览:99
lua语言编程用哪个平台 浏览:272
政采云如何导出pdf投标文件 浏览:529
php获取postjson数据 浏览:551
javatimetask 浏览:16
编程的话要什么证件 浏览:94
钱脉通微信多开 浏览:878
中学生学编程哪个培训机构好 浏览:852
荣耀路由TV设置文件共享错误 浏览:525

友情链接