㈠ 微程序和程序的关系
微程序是由多个机器指令组成的机器指令集,程序则是为了完成某一应用功能所编写的代码的集合。简单一点,微程序是机器指令级别的,程序是高级语言级别的。
一种用于解决实际问题的机器指令的有序集合,包括子程序、分支、循环和其他结构,存储在主存中,可以更新和修改;
微程序设计是一组有序的微指令。微程序设计是传统程序设计方法在控制逻辑设计中的应用。因此,微程序也可以有微子程序、分支、循环等结构。
(1)程序是控制微程序的吗扩展阅读:
微程序和程序的区别
1、不同的系统
是用某种编程语言编写的,运行在某种目标架构上。微程序存储在控制内存CM中,控制内存CM只能读取,不能更改。CM中的所有微程序解释并执行整个指令系统中的所有机器指令。
2、编译是不同的
通常,程序是用高级语言编写的,然后在编译期间由编译器/解释器翻译成机器语言以执行。
在某些情况下,也可以用汇编语言进行编程,汇编语言经过机器语言的修改,用文字代替0和1,如Add用于添加,Mov用于传递数据等。
㈡ 微程序的控制方法
微程序控制方法由于规整性好,灵活方便,通用性强,因此在包括计算机在内的各种复杂数字系统控制器的设计中得到了广泛应用,成为控制器的主流设计方法之一。
程序控制的基本思想,就是仿照通常的解题程序的方法,把所有的控制命令信号汇集在一起编码成所谓的微指令,存放在一个EPROM里。系统运行时,一条又一条地读出这些微指令,从而产生执行部件所需要的各种控制信号,以控制各逻辑部件执行所规定的操作。
一个数字系统基本上可以划分成两大部分——控制部件和执行部件,如图6.26所示。控制器就是控制部件。而ALU、寄存器组、存储器RAM等,相对控制器来讲,就是执行部件。那么两者之间是如何进行联系的呢?
控制部件与执行部件的联系之一,是通过控制线。控制部件通过控制线向执行部件发出各种控制命令,我们把这种控制命令称为微命令,而执行部件接受微命令所执行的操作叫作微操作。
控制部件与执行部件之间的另一联系是反馈信息。例如由于运算处理中正在处理的数据因其结果特征(正、负、进位、溢出等)而影响下一个操作的执行,因此就需要规定条件测试或状态测试。执行部件通过反馈线向控制部件反映当前操作的结果情况,以便使控制部件根据执行部件的“状态”标志下达新的微命令。
在系统的一个基本周期(又称机器周期,一般由几个时钟周期组成)中,一组实现一定操作功能的微命令的组合,构成一条微指令。
这里要强调两点:
第一,一条微指令的有效持续时间为一个系统基本周期,它表示从R0M中读出微指令与执行这条微指令的时间总和。当从ROM中读出下一条微指令后,当前的这条微指令即失效。
第二,一条微指令中包含若干个微命令,它们分头并行地控制执行部件进行相应的微操作。
微指令除给出微命令信息外,还应给出测试判别信息。一旦出现此信息,执行这条微指令时要对系统的有关“状态标志”进行测试,从而实现控制算法流程图的条件分支。微指令中还包含一个下址字段,该字段将指明ROM中下一条微指令的地址。
图6.27示出了微指令的典型结构,长条框内的符号X表示一个二进制位(bit)。其中微命令字段给出执行部件的控制信号:X编码为1,表示有微命令,X编码为0表示无微命令。测试判别字段和下一地址字段一起实现顺序控制:当测试判别字段无效时(X编码为0),下址字段信息即是下条微指令的地址;当判别测试字段有效时(其中一个X编码为1),根据执行部件反馈线上的标志信息对下址字段信息进行修改,修改好的地址即为下条微指令的地址。
微程序是由若干条微指令组成的序列。在计算机中,一条机器指令的功能可由若干条微指令组成的序列来解释和执行,因此机器执行一条指令的过程,也就是执行一个相应的微程序的过程。就一般数字系统而言,按照我们在第6.5节中使用的概念,微程序实质上就是将控制算法流程图用EPROM等来实现。
微程序概念的引入使大型复杂数字系统控制器的设计发生了革命性的变化。因为微程序技术可代替硬件布线的控制技术,即由门电路和触发器等组成的硬件网络可被存有控制代码的EPROM存储器所取代 。
㈢ 简述程序和微程序两个的概念和区别。
程序是一系列机器指令的有序集合,用于解决实际问题,有子程序、分支、循环等结构,存放在主存中,可以更新修改;
微程序是一系列微指令的有序集合,微程序设计是将传统的程序设计方法运用到控制逻辑的设计中,因此在微程序中也可以有微子程序、分支、循环等结构。
区别:
1、体系不同
程序它以某些程序设计语言编写,运行于某种目标结构体系上。微程序存储在控制存储器CM中,只能读出,不能更改,CM中的所有微程序解释执行整个指令系统中的所有机器指令。
2、编译不同
一般的,程序是由高级语言编写,然后在编译的过程中,被编译器/解释器转译为机器语言,从而得以执行。
有时,也可用汇编语言进行编程,汇编语言在机器语言上进行了改进,以单词代替了0和1,例如以Add代表相加,Mov代表传递数据等。
微程序的设计技术:
微程序设计技术,指的是利用软件技术来实现硬件设计的一门技术。优点:微程序设计克服了组合逻辑控制单元线路庞杂的缺点,同硬布线比较具有规整性,灵活性,可维护性等一系列优点。缺点:由于增加了到控制存储器中读取微指令的时间导致执行速度慢。
程序的运行:
为了使计算机程序得以运行,计算机需要加载代码,同时也要加载数据。从计算机的底层来说,这是由高级语言(例如Java,C/C++,C#等)代码转译成机器语言而被CPU所理解,进行加载。
㈣ 微程序的控制方式有哪些
微程序控制的基本思想,就是仿照通常的解题程序的方法,把操作控制信号编成所谓的“微指令”,存放到一个只读存储器里.当机器运行时,一条又一条地读出这些微指令,从而产生全机所需要的各种操作控制信号,使相应部件执行所规定的操作
.
采用微程序控制方式的控制器称为微程序控制器。所谓微程序控制方式是指微命令不是由组合逻辑电路产生的,而是由微指令译码产生。一条机器指令往往分成几步执行,将每一步操作所需的若干位命令以代码形式编写在一条微指令中,若干条微指令组成一段微程序,对应一条机器指令。在设计cpu时,根据指令系统的需要,事先编制好各段微程序
,且将它们存入一个专用存储器(称为控制存储器)中。微程序控制器由指令寄存器ir、程序计数器pc、程序状态字寄存器psw、时序系统、控制存储器cm、微指令寄存器以及微地址形成电路、微地址寄存器等部件组成。执行指令时,从控制存储器中找到相应的微程序段,逐次取出微指令,送入微指令寄存器,译码后产生所需微命令,控制各步操作完成。
㈤ 微程序的控制方式有哪些
1.
组合逻辑控制器有哪些缺点,微程序控制器如何针对这些缺点对其进行了改
进?
(P140)
答:组合逻辑控制器的缺点为:
①设计不规整,设计效率较低;控制器核心结构零乱,不便于检查和调试。
②不易修改与扩展指令系统功能。
改进:
引入了程序技术,使设计规整;
引入了存储逻辑,使功能易于扩展。
2.
微程序控制的基本思想是什么?
答:
①若干微命令编制成一条微指令,控制实现一步操作;
②若干微指令组成一段微程序,解释执行一条机器指令;
③微程序事先存放在控制存储器中,执行机器指令时再取出。
3.
简述控制存储器存储的内容,以及与主存的区别。
答:控制存储器中存放微程序。
与主存的区别:
①控制存储器在
CPU
中、而主存不是;
②控制存储器是一个
ROM
,而主存是
ROM
和
RAM
③控制存储器容量比主存小
④控制存储器字长比主存长
⑤控制存储器速度比主存快
4.
微指令可分为哪两部分?各自作用是什么?
答:微指令可分为
微命令字段(或微操作控制字段
)
和微地址字段
(
或顺序控制字段
)
微命令字段:提供一步操作所需的微命令。
微地址字段:指明后续微地址的形成方式
,
提供微地址的给定部分。
5.
采用分段直接编译法时,微命令分组的原则是什么?
答:同类操作中互斥的微命令放同一字段。
6.
什么是功能转移?
答:根据机器指令找到对应微程序入口地址的过程称为功能转移。
7.
后续微地址的形成方式有哪些?
答:有增量方式和断定方式两种。
㈥ 微程序控制设计
微程序是英国剑桥大学教授M.V.Wilkes在1951年首先提出的,它是实现程序的一种手段,具体就是将一条机器指令编写成一段微程序。每一个微程序包含若干条微指令,每一条微指令对应一条或多条微操作。在有微程序的系统中,CPU内部有一个控制存储器,用于存放各种机器指令对应的微程序段.当CPU执行机器指令时,会在控制存储器里寻找与该机器指令对应的微程序,取出相应的微指令来控制执行各个微操作,从而完成该程序语句的功能.
微命令
控制部件通过控制线向执行部件发出的各种控制命令(这个是数理逻辑电路的领域)微操作
执行部件接受微命令后所进行的操作
微指令与微程序
微指令:同时发出的控制信号所执行的一组微操作.例如:
加法指令的执行可分为:取指,计算地址,取操作数和加法运算四步,每一步都由一组微操作实现.这一组能同时执行的微操作就构成一条微指令.
微程序:一组微指令的集合.这样:
程序由一组指令组成;
指令由一个微程序实现
微程序由一组微指令实现
微指令由一组微操作实现
,微程序设计技术,指的是利用软件技术来实现硬件设计的一门技术。
优点:微程序设计克服了组合逻辑控制单元线路庞杂的缺点,同硬布线比较具有规整性,灵活性,可维护性等一系列优点。
缺点:由于增加了到控制存储器中读取微指令的时间导致执行速度慢