⑴ 如何分析jvm mp 内存日志
当服务器挂起,崩溃或者性能底下时,就需要抓取服务器的线程堆栈(Thread Dump)用于后续的分析.
Thread mp提供了当前活动的线程的快照. 它提供了JVM中所有java线程的栈跟踪信息
有很多方式可用于获取Thread Dump, 一些是操作系统特定的命令.
操作系统命令获取ThreadDump:
Windows:
1. 转向服务器的标准输出窗口并按下Control + Break组合键, 之后需要将线程堆栈复制到文件中
UNIX/ Linux
首先查找到服务器的进程号(process id), 然后获取堆栈.
1. ps –ef | grep java
2. kill -3
注意一定要谨慎, 一步不慎就可能让服务器进程被杀死!
JVM 自带的工具获取线程堆栈:
JDK自带命令行工具获取PID并做ThreadDump:
1. jps
2. jstack
使用JVisualVM:
Threads 标签页àThreadDump按钮.
WebLogic 自带的获取 thread mp的工具:
1. webLogic.Admin 工具
a. 打开命令提示符, 通过运行/bin/setDomain.env设置相关类路径
b. 执行下面的命令
java weblogic.Admin -url t3://localhost:7001 -username weblogic -password weblogic1 THREAD_DUMP
注意: Thread Dump 会打印到标准输出, 如nohup日志或者进程窗口.
2. 使用 Admin Console
a. 登录 Admin Console , 点击对应的服务器
b. 点击Server à Monitoring àThreads
c. 点击: Dump Thread Stack 按钮
3. 使用WLST (WebLogic Scripting Tool)
connect(‘weblogic’,'weblogic1’,’t3://localhost:7001’)
cd(‘Servers’)
cd(‘AdminServer’)
threadDump()
disconnect()
exit()
注意: 线程堆栈将会保存在运行wlst的当前目录下.
4. 使用utils.ThreadDumper
用法:
C:\bea\wlserver_10.3\server\lib>java -cp weblogic.jar utils.ThreadDumper
Broadcast Thread mps disabled: must specify weblogic.debug.mpThreadAddr and
weblogic.debug.mpThreadPort
Exception in thread "main" java.lang.I llegalArgumentException: Port out of range
:-1
at java.net.DatagramPacket.setPort(Unknown Source)
at java.net.DatagramPacket.(Unknown Source)
at java.net.DatagramPacket.(Unknown Source)
at utils.ThreadDumper.sendDumpMsg(ThreadDumper.java:124)
at utils.ThreadDumper.main(ThreadDumper.java:145)
5. 如果服务器是作为Windows服务的方式运行, 请运行下列命令:
WL_HOME\bin\beasvc -mp -svcname:service-name
⑵ 在新建虚拟机时出现问题
JConsole
JConsole 图形用户界面是一种符合 Java 管理扩展(JMX)规范的监视工具。JConsole 使用 Java 虚拟机 (Java VM) 的广泛检测来提供有关在 Java 平台上运行的应用程序的性能和资源消耗的信息。
使用方法 本地
使用jconsole命令:监视本地运行的所有 Java 应用程序,JConsole 可以连接到这些应用程序。
使用jconsole PID命令:监视指定PID的Java应用程序。
使用jsconsole hostName:portNum命令:hostName是运行应用程序的系统的名称,portNum是您在启动Java VM时启用 JMX 代理时指定的端口号。
使用service:jmx::命令:使用 JMX 服务 URL 进行连接。
内容分析
将 JConsole 连接到应用程序后,JConsole 由六个选项卡组成。
概述:显示有关 Java VM 和受监视值的概述信息。
内存:显示有关内存使用的信息。
线程:显示有关线程使用的信息。
类:显示有关类加载的信息。
VM:显示有关 Java VM 的信息。
MBeans:显示有关 MBeans 的信息。
显示有关 CPU 使用情况、内存使用情况、线程计数和在Java VM中加载的类的图形监视信息。
提供执行GC的操作,可以随时点击按钮进行垃圾回收
伊甸园空间(堆):最初为大多数对象分配内存的池。
幸存者空间(堆):包含在伊甸园空间垃圾回收中幸存下来的物体的池。
终身代(堆):包含在幸存者空间中存在一段时间的对象的池。
永久生成(非堆):包含虚拟机本身的所有反射数据的池,如类和方法对象。使用类数据共享的 Java VM,这一代分为只读和读写区域。
代码缓存(非堆):HotSpotJava VM 还包括一个代码缓存,其中包含用于编译和存储本机代码的内存。
Java VM管理两种类型的内存:堆内存和非堆内存,这两种内存都是在 Java VM 启动时创建的。
堆内存是Java VM为所有类实例和数组分配内存的运行时数据区域。堆的大小可能是固定的或可变的。垃圾回收器是一个自动内存管理系统,用于回收对象的堆内存。
非堆内存包括所有线程之间共享的方法区域和Java VM的内部处理或优化所需的内存。它存储每类结构,如运行时常量池、字段和方法数据,以及方法和构造函数的代码。方法区域在逻辑上是堆的一部分,但是,根据实现,Java VM 可能不会对它进行垃圾回收或压缩。与堆内存一样,方法区域可能为固定大小或可变大小。方法区域的内存不需要连续。
内存池和内存管理器是Java VM内存系统的关键方面。
内存池表示Java VM管理的内存区域。Java VM至少有一个内存池,它可能会在执行期间创建或删除内存池。内存池可以属于堆内存或非堆内存。
内存管理器管理一个或多个内存池。垃圾回收器是一种内存管理器,负责回收不可到达的对象使用的内存。Java VM可能具有一个或多个内存管理器。它可以在执行期间添加或删除内存管理器。内存池可以由多个内存管理器管理。
垃圾回收 (GC) 是Java VM释放不再引用的对象占用的内存的方式。通常认为具有活动引用为"活动"且未引用(或无法访问)对象的对象为"已死"。垃圾回收是释放死对象使用的内存的过程。GC 使用的算法和参数对性能有显著影响。
Java hotspot VM垃圾回收器使用代数 GC。生成 GC 利用大多数程序符合以下概括的观察。
它们创建许多寿命较短的对象,例如迭代器和局部变量。
它们创建一些寿命很长的对象,例如高级持久对象。
提供有关线程使用的信息。
查找监视器死锁线程:检测对象监视器锁上是否有任何线程死锁。此操作返回死锁线程指示的数组。
getThreadInfo:返回线程信息。这包括线程当前被阻止的名称、堆栈跟踪和监视器锁(如果有)以及持有该锁的线程以及线程争用统计信息。
获取ThreadCpu时间:返回给定线程消耗的 CPU 时间
显示有关类加载的信息。
提供有关Java VM的信息。
以通用方式显示有关在平台 MBean 服务器注册的所有 MBeans 的信息。MBeans 选项卡允许您访问平台 MXBean 检测的完整集,包括在其他选项卡中不可见的仪器。此外,您还可以使用 MBeans 选项卡监视和管理应用程序的 MBeans。
列出目标系统上已检测的 Java 虚拟机 (JVM)。
监视 Java 虚拟机 (JVM) 统计信息。
对Java应用程序的资源和性能进行实时的命令行的监控,包括了对Heap size和垃圾回收状况的监控。
命令格式
jstat [-option] [PID]
option参数
class:显示有关类加载器行为的统计信息。
compiler:显示有关Java HotSpot VM实时编译器行为的统计信息。
gc:显示有关垃圾回收堆行为的统计信息。
gccapacity:显示有关几代人容量及其相应空间的统计信息。
gccause:显示有关垃圾回收统计信息(与 相同)的摘要,以及最后和当前(如果适用)垃圾回收事件的原因。-gcutil
gcnew:显示新一代行为的统计信息。
gcnewcapacity:显示有关新一代大小及其相应空间的统计信息。
gcold:显示有关旧一代和元空间统计信息行为的统计信息。
gcoldcapacity:显示有关旧一代大小的统计信息。
gcmetacapacity:显示有关元空间大小的统计信息。
gcutil:显示有关垃圾回收统计信息的摘要。
printcompilation:显示 Java 热点 VM 编译方法统计信息。
1.jstat –class: 显示加载class的数量,及所占空间等信息。
2.jstat -compiler显示VM实时编译的数量等信息。
3.jstat -gc: 可以显示gc的信息,查看gc的次数,及时间。
4.jstat -gccapacity:可以显示,VM内存中三代(young,old,perm)对象的使用和占用大小
5.jstat -gcutil:统计gc信息
6.jstat -gcnew:年轻代对象的信息。
7.jstat -gcnewcapacity: 年轻代对象的信息及其占用量。
8.jstat -gcold:old代对象的信息。
9.jstat -gcoldcapacity: old代对象的信息及其占用量。
10.jstat -gcpermcapacity: perm对象的信息及其占用量。
11.jstat -printcompilation:当前VM执行的信息。
监视 Java 虚拟机 (JVM),并使远程监视工具能够连接到 JVM
命令格式
jstatd -[option]
option
-nr当找不到现有的RMI注册表时,不尝试使用jstatd进程创建一个内部的RMI注册表。
-p port在指定的端口查找RMI注册表。如果没有找到,并且没有指定-nr选项,则在该端口自行创建一个内部的RMI注册表。
-n rminameRMI注册表中绑定的RMI远程对象的名称。默认的名称为JStatRemoteHost。如果多个jstatd服务器在同一主机上运行,你可以通过指定该选项来让每个服务器导出的RMI对象具有唯一的名称。不管如何,这样做需要将唯一的服务器名称包含进监控客户端的hostid和vmid字符串中。
-Joption将选项参数传递给被javac调用的java启动程序。例如,-J-Xms48m设置启动内存为48 MB。使用-J将选项参数传递给执行Java应用程序的底层虚拟机,这是一种常见惯例。
使用方法
1.在jdk的bin目录下创建文件jstatd.all.policy
2.写入下面的安全配置
grant codebase "file:/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.191.b12-1.el7_6.x86_64/lib/tools.jar" {
permission java.security.AllPermission;
#此处写绝对路径,主要是防止路径错误问题,排查问题,应该写成相对路径
3.启动jstatd
./jstatd -J-Djava.security.policy=jstatd.all.policy -J-Djava.rmi.server.hostname=x.x.x.x &
4.使用jvisualvm工具远程连接,进行监控
jvisualvm
VisualVM,能够监控线程,内存情况,查看方法的CPU时间和内存中的对 象,已被GC的对象,反向查看分配的堆栈(如100个String对象分别由哪几个对象分配出来的).
同时他还提供很多插件可以自己安装,是一款不错的监控分析工具。
故障排除工具 JInfo
可以用来查看正在运行的 java 应用程序的扩展参数,包括Java System属性和JVM命令行参数;也可以动态的修改正在运行的 JVM 一些参数。当系统崩溃时,jinfo可以从core文件里面知道崩溃的Java应用程序的配置信息
命令格式
参数说明
pid对应jvm的进程id
executable core产生core mp文件
[server-id@]remote server IP or hostname远程的ip或者hostname,server-id标记服务的唯一性id
option
no option输出全部的参数和系统属性
-flag name输出对应名称的参数
-flag [+|-]name开启或者关闭对应名称的参数
-flag name=value设定对应名称的参数
-flags输出全部的参数
-sysprops输出系统属性
Javacore 概述
Javacore,也可以称为“threadmp”或是“javamp”,它是 Java 提供的一种诊断特性,能够提供一份可读的当前运行的 JVM 中线程使用情况的快照。即在某个特定时刻,JVM 中有哪些线程在运行,每个线程执行到哪一个类,哪一个方法。应用程序如果出现不可恢复的错误或是内存泄露,就会自动触发 Javacore 的生成。
使用方法
1.jinfo pid:输出当前 jvm 进程的全部参数和系统属性
2.jinfo -flag name pid:输出对应名称的参数使用该命令,可以查看指定的 jvm 参数的值。如:查看当前 jvm 进程是否开启打印 GC 日志。
3.jinfo -flag [+|-]name pid:开启或者关闭对应名称的参数
使用 jinfo 可以在不重启虚拟机的情况下,可以动态的修改 jvm 的参数。尤其在线上的环境特别有用。
4.jinfo -flag name=value pid:修改指定参数的值。
5.jinfo -flags pid:输出全部的参数
6.jinfo -sysprops pid:输出当前 jvm 进行的全部的系统属性
jhat
主要是用来分析java堆的命令,可以将堆中的对象以html的形式显示出来,包括对象的数量,大小等等,并支持对象查询语言。
1.使用jmap命令导出堆文件jmap -mp:live,file=a.log pid
也可以使用下面方式导出堆文件
1、使用jconsole选项通过HotSpotDiagnosticMXBean从运行时获得堆转储(生成mp文件)、
2、虚拟机启动时如果指定了-XX:+HeapDumpOnOutOfMemoryError选项, 则在抛出OutOfMemoryError时, 会自动执行堆转储。
3、使用hprof命令
2.使用jhat分析堆文件jhat -J-Xmx512M a1.log
3.查看分析的html页面
http://ip:7000/jhat中的OQL(对象查询语言)
如果需要根据某些条件来过滤或查询堆的对象,这是可能的,可以在jhat的html页面中执行OQL,来查询符合条件的对象
基本语法:
select
[from [instanceof] ]
[where ]
解释:
(1)class name是java类的完全限定名,如:java.lang.String,java.util.ArrayList, C是char数组,java.io.File是java.io.File[]
(2)类的完全限定名不足以唯一的辨识一个类,因为不同的ClassLoader载入的相同的类,它们在jvm中是不同类型的
(3)instanceof表示也查询某一个类的子类,如果不明确instanceof,则只精确查询class name指定的类
(4)from和where子句都是可选的
(5)java域表示:obj.field_name;java数组表示:array[index]
举例:
(1)查询长度大于100的字符串
select s from java.lang.String s where s.count > 100
(2)查询长度大于256的数组
select a from [I a where a.length > 256
(3)显示匹配某一正则表达式的字符串
select a.value.toString() from java.lang.String s where /java/(s.value.toString())
(4)显示所有文件对象的文件路径
select file.path.value.toString() from java.io.File file
(5)显示所有ClassLoader的类名
select classof(cl).name from instanceof java.lang.ClassLoader cl
(6)通过引用查询对象
select o from instanceof 0xd404d404 o
built-in对象 -- heap
(1)heap.findClass(class name) -- 找到类
select heap.findClass("java.lang.String").superclass
(2)heap.findObject(object id) -- 找到对象
select heap.findObject("0xd404d404")
(3)heap.classes -- 所有类的枚举
select heap.classes
(4)heap.objects -- 所有对象的枚举
select heap.objects("java.lang.String")
(5)heap.finalizables -- 等待垃圾收集的java对象的枚举
(6)heap.livepaths -- 某一对象存活路径
select heaplivepaths(s) from java.lang.String s
(7)heap.roots -- 堆根集的枚举
辨识对象的函数
(1)classof(class name) -- 返回java对象的类对象
select classof(cl).name from instanceof java.lang.ClassLoader cl
(2)identical(object1,object2) -- 返回是否两个对象是同一个实例
select identical(heap.findClass("java.lang.String").name, heap.findClass("java.lang.String").name)
(3)objectid(object) -- 返回对象的id
select objectid(s) from java.lang.String s
(4)reachables -- 返回可从对象可到达的对象
select reachables(p) from java.util.Properties p -- 查询从Properties对象可到达的对象
select reachables(u, "java.net.URL.handler") from java.net.URL u -- 查询从URL对象可到达的对象,但不包括从URL.handler可到达的对象
(5)referrers(object) -- 返回引用某一对象的对象
select referrers(s) from java.lang.String s where s.count > 100
(6)referees(object) -- 返回某一对象引用的对象
select referees(s) from java.lang.String s where s.count > 100
(7)refers(object1,object2) -- 返回是否第一个对象引用第二个对象
select refers(heap.findObject("0xd4d4d4d4"),heap.findObject("0xe4e4e4e4"))
(8)root(object) -- 返回是否对象是根集的成员
select root(heap.findObject("0xd4d4d4d4"))
(9)sizeof(object) -- 返回对象的大小
select sizeof(o) from [I o
(10)toHtml(object) -- 返回对象的html格式
select "+ toHtml(o) + "" from java.lang.Object o
(11)选择多值
select {name:t.name?t.name.toString():"null",thread:t} from instanceof java.lang.Thread t
数组、迭代器等函数
(1)concat(enumeration1,enumeration2) -- 将数组或枚举进行连接
select concat(referrers(p),referrers(p)) from java.util.Properties p
(2)contains(array, expression) -- 数组中元素是否满足某表达式
select p from java.util.Properties where contains(referres(p), "classof(it).name == 'java.lang.Class'")
返回由java.lang.Class引用的java.util.Properties对象
built-in变量
it -- 当前的迭代元素
index -- 当前迭代元素的索引
array -- 被迭代的数组
(3)count(array, expression) -- 满足某一条件的元素的数量
select count(heap.classes(), "/java.io./(it.name)")
(4)filter(array, expression) -- 过滤出满足某一条件的元素
select filter(heap.classes(), "/java.io./(it.name)")
(5)length(array) -- 返回数组长度
select length(heap.classes())
(6)map(array,expression) -- 根据表达式对数组中的元素进行转换映射
select map(heap.classes(),"index + '-->' + toHtml(it)")
(7)max(array,expression) -- 最大值, min(array,expression)
select max(heap.objects("java.lang.String"),"lhs.count>rhs.count")
built-in变量
lhs -- 左边元素
rhs -- 右边元素
(8)sort(array,expression) -- 排序
select sort(heap.objects('[C'),'sizeof(lhs)-sizeof(rhs)')
(9)sum(array,expression) -- 求和
select sum(heap.objects('[C'),'sizeof(it)')
(10)toArray(array) -- 返回数组
(11)unique(array) -- 唯一化数组
jmap
打印进程、核心文件或远程调试服务器的共享对象内存映射或堆内存详细信息。
jmap [option]
(to connect to running process) 连接到正在运行的进程
jmap [option]
(to connect to a core file) 连接到核心文件
jmap [option] [server_id@]
(to connect to remote debug server) 连接到远程调试服务
option
pid:目标进程的PID,进程编号,可以采用ps -ef | grep java查看java进程的PID;
executable:产生core mp的java可执行程序;
core:将被打印信息的core mp文件;
remote-hostname-or-IP:远程debug服务的主机名或ip;
server-id:唯一id,假如一台主机上多个远程debug服务;
使用方法
jmap -mp:[live,]format=b,file= PID:使用hprof二进制形式,输出jvm的heap内容到文件
jmap -finalizerinfo PID:打印正等候回收的对象的信息
jmap -heap PID:打印heap的概要信息,GC使用的算法,heap(堆)的配置及JVM堆内存的使用情况。
jmap -histo:live PID:打印每个class的实例数目,内存占用,类全名信息。VM的内部类名字开头会加上前缀”*”. 如果live子参数加上后,只统计活的对象数量.
jmap -permstat PID:打印classload和jvm heap长久层的信息. 包含每个classloader的名字、活泼性、地址、父classloader和加载的class数量。另外,内部String的数量和占用内存数也会打印出来。
-F强迫.在pid没有相应的时候使用-mp或者-histo参数。在这个模式下,live子参数无效。
-h | -help打印辅助信息
-J传递参数给jmap启动的jvm.
jstack命令主要用于调试java程序运行过程中的线程堆栈信息,可以用于检测死锁,进程耗用cpu过高报警问题的排查。jstack命令会打印出所有的线程,包括用户自己启动的线程和jvm后台线程。
命令格式
jstack -[option] pid
option
-F强制mp线程堆栈信息. 用于进程hung住,jstack命令没有响应的情况
-m同时打印java和本地(native)线程栈信息,m是mixed mode的简写
-l打印锁的额外信
公众号“Java精选”所发表内容注明来源的,版权归原出处所有(无法查证版权的或者未注明出处的均来自网络,系转载,转载的目的在于传递更多信息,版权属于原作者。如有侵权,请联系,笔者会第一时间删除处理!
最近有很多人问,有没有读者交流群!加入方式很简单,公众号Java精选,回复“加群”,即可入群!
(微信小程序):3000+道面试题,包含Java基础、并发、JVM、线程、MQ系列、Redis、Spring系列、Elasticsearch、Docker、K8s、Flink、Spark、架构设计等,在线随时刷题!
------ 特别推荐 ------
特别推荐:专注分享最前沿的技术与资讯,为弯道超车做好准备及各种开源项目与高效率软件的公众号,「大咖笔记」,专注挖掘好东西,非常值得大家关注。点击下方公众号卡片关注。
文章有帮助的话,在看,转发吧!
⑶ 如何使用jstack分析线程状态
jstack 线程状态
jstack 线程里,值得关注的线程状态有:
死锁,Deadlock(重点关注)
执行中,Runnable
等待资源,Waiting
on condition(重点关注)
等待获取监视器,Waiting
on monitor entry(重点关注)
暂停,Suspended
对象等待中,Object.wait()
或 TIMED_WAITING
阻塞,Blocked(重点关注)
停止,Parked
下面我们先从第一个例子开始分析,然后再列出不同线程状态的含义以及注意事项,最后再补充两个实例。
综合示范一:Waiting
to lock 和 Blocked
实例如下:
"RMI TCP Connection(267865)-172.16.5.25" daemon prio=10 tid=0x00007fd508371000 nid=0x55ae waiting
for monitor entry [0x00007fd4f8684000]
java.lang.Thread.State: BLOCKED
(on object monitor)
at org.apache.log4j.Category.callAppenders(Category.java:201)
- waiting
to lock <0x00000000acf4d0c0> (a org.apache.log4j.Logger)
at org.apache.log4j.Category.forcedLog(Category.java:388)
at org.apache.log4j.Category.log(Category.java:853)
at org.apache.commons.logging.impl.Log4JLogger.warn(Log4JLogger.java:234)
at com.tuan.core.common.lang.cache.remote.SpyMemcachedClient.get(SpyMemcachedClient.java:110)
……
1)线程状态是 Blocked,阻塞状态。说明线程等待资源超时!
2)“ waiting to lock <0x00000000acf4d0c0>”指,线程在等待给这个 0x00000000acf4d0c0 地址上锁(英文可描述为:trying
to obtain 0x00000000acf4d0c0 lock)。
3)在 mp 日志里查找字符串 0x00000000acf4d0c0,发现有大量线程都在等待给这个地址上锁。如果能在日志里找到谁获得了这个锁(如locked < 0x00000000acf4d0c0 >),就可以顺藤摸瓜了。
4)“waiting for monitor entry”说明此线程通过 synchronized(obj) {……} 申请进入了临界区,从而进入了下图1中的“Entry
Set”队列,但该 obj 对应的 monitor 被其他线程拥有,所以本线程在 Entry Set 队列中等待。
5)第一行里,"RMI TCP Connection(267865)-172.16.5.25"是 Thread Name 。tid指Java Thread id。nid指native线程的id。prio是线程优先级。[0x00007fd4f8684000]是线程栈起始地址。
Dump文件中的线程状态含义及注意事项
含义如下所示:
Deadlock:死锁线程,一般指多个线程调用间,进入相互资源占用,导致一直等待无法释放的情况。
Runnable:一般指该线程正在执行状态中,该线程占用了资源,正在处理某个请求,有可能正在传递SQL到数据库执行,有可能在对某个文件操作,有可能进行数据类型等转换。
Waiting on condition:等待资源,或等待某个条件的发生。具体原因需结合
stacktrace来分析。
一种情况是网络非常忙,几乎消耗了所有的带宽,仍然有大量数据等待网络读写;
另一种情况也可能是网络空闲,但由于路由等问题,导致包无法正常的到达。
如果堆栈信息明确是应用代码,则证明该线程正在等待资源。一般是大量读取某资源,且该资源采用了资源锁的情况下,线程进入等待状态,等待资源的读取。
又或者,正在等待其他线程的执行等。
如果发现有大量的线程都在处在 Wait on condition,从线程 stack看,正等待网络读写,这可能是一个网络瓶颈的征兆。因为网络阻塞导致线程无法执行。
另外一种出现 Wait on condition的常见情况是该线程在 sleep,等待 sleep的时间到了时候,将被唤醒。
Blocked:线程阻塞,是指当前线程执行过程中,所需要的资源长时间等待却一直未能获取到,被容器的线程管理器标识为阻塞状态,可以理解为等待资源超时的线程。
Waiting for monitor entry 和 in Object.wait():Monitor是
Java中用以实现线程之间的互斥与协作的主要手段,它可以看成是对象或者 Class的锁。每一个对象都有,也仅有一个
monitor。从下图1中可以看出,每个 Monitor在某个时刻,只能被一个线程拥有,该线程就是 “Active
Thread”,而其它线程都是 “Waiting Thread”,分别在两个队列 “ Entry Set”和 “Wait Set”里面等候。在
“Entry Set”中等待的线程状态是 “Waiting for monitor entry”,而在 “Wait Set”中等待的线程状态是
“in Object.wait()”。
图1 A Java Monitor
综合示范二:Waiting
on condition 和 TIMED_WAITING
实例如下:
"RMI TCP Connection(idle)" daemon prio=10 tid=0x00007fd50834e800 nid=0x56b2 waiting
on condition [0x00007fd4f1a59000]
java.lang.Thread.State: TIMED_WAITING (parking)
at sun.misc.Unsafe.park(Native Method)
- parking to wait for <0x00000000acd84de8> (a
java.util.concurrent.SynchronousQueue$TransferStack)
at java.util.concurrent.locks.LockSupport.parkNanos(LockSupport.java:198)
at java.util.concurrent.SynchronousQueue$TransferStack.awaitFulfill(SynchronousQueue.java:424)
at java.util.concurrent.SynchronousQueue$TransferStack.transfer(SynchronousQueue.java:323)
at java.util.concurrent.SynchronousQueue.poll(SynchronousQueue.java:874)
at java.util.concurrent.ThreadPoolExecutor.getTask(ThreadPoolExecutor.java:945)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:907)
at java.lang.Thread.run(Thread.java:662)
1)“TIMED_WAITING (parking)”中的 timed_waiting 指等待状态,但这里指定了时间,到达指定的时间后自动退出等待状态;parking指线程处于挂起中。
2)“waiting on condition”需要与堆栈中的“parking to wait for <0x00000000acd84de8> (a
java.util.concurrent.SynchronousQueue$TransferStack)”结合来看。首先,本线程肯定是在等待某个条件的发生,来把自己唤醒。其次,SynchronousQueue
并不是一个队列,只是线程之间移交信息的机制,当我们把一个元素放入到 SynchronousQueue
中时必须有另一个线程正在等待接受移交的任务,因此这就是本线程在等待的条件。
3)别的就看不出来了。
综合示范三:in
Obejct.wait() 和 TIMED_WAITING
实例如下:
"RMI RenewClean-[172.16.5.19:28475]"
daemon prio=10 tid=0x0000000041428800 nid=0xb09 in Object.wait() [0x00007f34f4bd0000]
java.lang.Thread.State: TIMED_WAITING (on object monitor)
at java.lang.Object.wait(Native Method)
- waiting on <0x00000000aa672478> (a java.lang.ref.ReferenceQueue$Lock)
at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:118)
- locked <0x00000000aa672478> (a java.lang.ref.ReferenceQueue$Lock)
at sun.rmi.transport.DGCClient$EndpointEntry$RenewCleanThread.run(DGCClient.java:516)
at java.lang.Thread.run(Thread.java:662)
1)“TIMED_WAITING (on object monitor)”,对于本例而言,是因为本线程调用了 java.lang.Object.wait(long timeout) 而进入等待状态。
2)“Wait Set”中等待的线程状态就是“ in Object.wait() ”。当线程获得了
Monitor,进入了临界区之后,如果发现线程继续运行的条件没有满足,它则调用对象(一般就是被 synchronized 的对象)的
wait() 方法,放弃了 Monitor,进入 “Wait Set”队列。只有当别的线程在该对象上调用了
notify() 或者 notifyAll() ,“ Wait Set”队列中线程才得到机会去竞争,但是只有一个线程获得对象的
Monitor,恢复到运行态。
3)RMI RenewClean 是 DGCClient 的一部分。DGC 指的是 Distributed GC,即分布式垃圾回收。
4)请注意,是先 locked <0x00000000aa672478>,后 waiting on <0x00000000aa672478>,之所以先锁再等同一个对象,请看下面它的代码实现:
static private class Lock { };
private Lock lock = new Lock();
public Reference<? extends T> remove(long
timeout)
{
synchronized (lock) {
Reference<? extends T> r = reallyPoll();
if (r != null) return r;
for (;;) {
lock.wait(timeout);
r = reallyPoll();
……
}
}
即,线程的执行中,先用 synchronized 获得了这个对象的 Monitor(对应于 locked <0x00000000aa672478> );当执行到 lock.wait(timeout);,线程就放弃了 Monitor 的所有权,进入“Wait Set”队列(对应于 waiting
on <0x00000000aa672478> )。
5)从堆栈信息看,是正在清理 remote references to remote objects ,引用的租约到了,分布式垃圾回收在逐一清理呢。
⑷ jstack 分析出线程id 如何找到进程吗
jstack 分析出线程id 如何找到进程
jstack用于打印出给定的java进程ID或core file或远程调试服务的Java堆栈信息。
如果是在64位机器上,需要指定选项"-J-d64",Windows的jstack使用方式只支持以下的这种方式:jstack [-l] pid
如果java程序崩溃生成core文件,jstack工具可以用来获得core文件的java stack和native stack的信息,从而可以轻松地知道java程序是如何崩溃和在程序何处发生问题。
另外,jstack工具还可以附属到正在运行的java程序中,看到当时运行的java程序的java stack和native stack的信息, 如果现在运行的java程序呈现hung的状态,jstack是非常有用的。
需要注意的问题:
l 不同的 JAVA虚机的线程 DUMP的创建方法和文件格式是不一样的,不同的 JVM版本, mp信息也有差别。
l 在实际运行中,往往一次 mp的信息,还不足以确认问题。建议产生三次 mp信息,如果每次 mp都指向同一个问题,我们才确定问题的典型性。
2、命令格式
$jstack [ option ] pid
$jstack [ option ] executable core
$jstack [ option ] [server-id@]remote-hostname-or-IP
参数说明:
pid: java应用程序的进程号,一般可以通过jps来获得;
executable:产生core mp的java可执行程序;
core:打印出的core文件;
remote-hostname-or-ip:远程debug服务器的名称或IP;
server-id: 唯一id,假如一台主机上多个远程debug服务;
示例:
$jstack –l 23561
线程分析:
一般情况下,通过jstack输出的线程信息主要包括:jvm自身线程、用户线程等。其中jvm线程会在jvm启动时就会存在。对于用户线程则是在用户访问时才会生成。