Ⅰ 学习java以后可以做什么
java是一门应用非常广泛的计算机语言,发展是比较不错的。
学成之后的就业岗位还是非常多的,网页制作,软件应用,服务器应用等等,都是java可以做的。想要学好Java,需要有正确的学习路线,有坚持不懈的学习毅力,也需要有专业老师的指导,这样才能学得更好。那么,学习Java需要掌握哪些知识和技能呢?这里简单列举一些。
Java学习需要掌握的知识与技能:
1、Java SE部分初级语法,面向对象,异常,IO流,多线程,Java Swing,JDBC,泛型,注解,反射等。
2、数据库部分,基础的sql语句,sql语句调优,索引,数据库引擎,存储过程,触发器,事务等。
3、前端部分, HTML5 CSS3 JS, HTML DOM Jquery BootStrap等。
4、Java EE部分,Tomcat和Nginx服务器搭建,配置文件,Servlet,JSP,Filter,Listener,http协议,MVC等。
5、框架部分,每个框架都可以分开学,在去学如何使用SSM 或者SSH框架,如何搭建,如何整合。开发中为什么会用框架,Rest是啥?Spring为啥经久不衰,底层如何实现等。
6、23种设计模式,掌握常用的,比如单例模式的多种实现,责任链模式,工厂模式,装饰器模式等,了解常用场景。
7、基础算法和数据结构,八大排序算法,查找算法。
8、熟练使用maven等构建工具,git等版本控制工具,熟悉常用linux命令,log4j,bug,junit单元测试,日志打印工具,Redis等NoSql。
互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。
想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。
祝你学有所成,望采纳。
Ⅱ 大数据需要学习那些内容学完之后可以做哪些工作
不同的大数据培训机构培训的课程内容也是不同的,但是比较好的大数据培训机构一般是根据企业需求来研发课程内容的,所以比较好的大数据培训课程中包含的知识点是差不多的,今天小编就以优就业大数据培训课程为例来给大家讲讲大数据培训什么内容,培训完都可以从事什么工作?
优就业的大数据培训课程内容主要有六个阶段,分别为第一阶段Java基础、第二阶段JavaEE核心、第三阶段Hadoop生态体系、第四阶段Spark生态体系、第五阶段项目实战+机器学习、第六阶段就业指导等。下面小编来详细说说每个阶段具体的学习内容。
第一阶段Java基础主要知识点有:Java基础语法、面向对象编程、常用类和工具类、集合框架体系、异常处理机制、文件和IO流、移动开户管理系统、多线程、枚举和垃圾回收、反射、JDK新特性、通讯录系统等。
第二阶段JavaEE核心主要知识点有:前端技术、数据库、JDBC技术、服务器端技术、Maven、Spring、SpringBoot、Git等。
第三阶段Hadoop生态体系包含的知识点主要有:Linux、Hadoop、ZooKeeper、Hive、HBase、Phoenix、Impala、Kylin、Flume、Sqoop&DataX、Kafka、Oozie&Azkaban、、Hue、智慧农业数仓分析平台等
第四阶段Spark生态体系的主要知识点有:Scala、Spark、交通领域汽车流量监控项目、Flink等。
第五阶段项目实战+机器学习的核心知识点有:高铁智能检测系统、电信充值、中国天气网、机器学习等。
第六阶段就业指导则是在学员学完课程内容后提供模拟面试、就业推荐等服务,帮助学员尽快就业。
学完全部大数据培训课程内容后,学员出来找工作可以找大数据运维师、大数据开发师等岗位。
Ⅲ 大数据培训课程安排有哪些,深圳大数据培训哪家好
首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。
大数据
Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。
Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。
Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。
Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。
Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
Ⅳ 求助帖,hbase新手,windows中的java怎么连接linux中的hbase
一、新建本地java工程
file->new->java project
二、添加jar包和配置文件
1、添加JAR包
右击Propertie在弹出的快捷菜单中选择Java Build Path对话框,在该对话框中单击Libraries选项卡,在该选项卡下单击
Add External JARs按钮,定位到$HBASE/lib目录下,并选取如下JAR包。
hadoop-core-1.0.0.jar
commons-loggings-version.jar
commons-cli-version.jar
commons-lang-version.jar
commons-configuration-version.jar
hbase-0.94.1.jar
zookeeper-3.4.3.jar
slf4j-api-1.5.8.jar
slf4j-log4j12-1.5.8.jar
log4j-1.2.16.jar
protobuf-java-2.4.1.jar
2、添加hbase-site.xml配置文件
在工程根目录下创建conf文件夹,将$HBASE_HOME/conf/目录中的hbase-site.xml文件复制到该文件夹中。通过右键
选择Propertie->Java Build Path->Libraries->Add Class Folder。
3、windows下开发HBase应用程序,HBase部署在linux环境中,在运行调试时可能会出现无法找到主机,类似异常信息如下:java.net.UnknownHostException: unknown host: master
解决办法如下:在C:\WINDOWS\system32\drivers\etc\hosts文件中添加如下信息
192.168.2.34 master
Ⅳ 十六进制转汉字
byte[]
bn={(byte)0xE6,(byte)0x9D,(byte)0x83,
//
权
(byte)0xE5,(byte)0xA8,(byte)0x81,
//
威
(byte)0xE6,(byte)0x8C,(byte)0x87,
//
指
(byte)0xE5,(byte)0x8D,(byte)0x97
};
//
南
String
s;
try
{
s=new
String(bn,"utf-8");
//
源码制
utf-8
}
catch(Exception
e)
{
s="error";
}
//
显示串
s,
的确是“权威指南”
//
utf-8
码长是不定的,原英文等ASCII码只要一字节,对西方有利,
拉丁文、阿拉伯文等
两字节,
而汉字等文字则为三字节,相比Unicode变长了。
。。。
所以,汉字串“权威指南”则为3X4=12个字节了,
网络下:
UTF-8(8-bit
Unicode
Transformation
Format)是一种针对Unicode的可变长度字符编码,又称万国码。由Ken
Thompson于1992年创建。现在已经标准化为RFC
3629。UTF-8用1到6个字节编码UNICODE字符。用在网页上可以同一页面显示中文简体繁体及其它语言(如英文,日文,韩文)。
问题都答到位了,若满意请及时采纳!!
Ⅵ 求一份完整的java自学学习方法
java自学网Java从入门到精通(第3版)PDF电子书.zip 免费下载
链接: https://pan..com/s/1vmPxcmXR7adtUZXwx64sFA
Java是一门面向对象的编程语言,不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承、指针等概念,因此Java语言具有功能强大和简单易用两个特征。Java语言作为静态面向对象编程语言的代表,极好地实现了面向对象理论,允许程序员以优雅的思维方式进行复杂的编程。
Ⅶ java主要用在哪里
在现实社会中有很多地方使用到了Java,从电子商务网站到Androidapps,从科学应用到金融产品,例如电子交易系统,从类似Minecraft的游戏再到Eclipse,Netbeans和IntelliJ的桌面应用,从开源的资源库到J2MEapps等等。下面带你一起详细了解Java的应用领域。
1、嵌入式领域
Java在嵌入式领域也有很大的应用。你只需要130KB就能够使用Java技术(在一块小的芯片或者传感器上),这显示了这个平台是多么的可靠。Java最初是为了嵌入式设备而设计的。
事实上,这也是Java最初的一项“立即编写,随处运行”主旨的一部分。
2、大数据技术
Hadoop和其他的大数据技术也在不同程度使用着Java,例如Apache的基于Java的Hbase,Accumulo(开源),以及ElasticSearch。 但是Java并没有占领整个领域,还有其他的大数据技术例如MongoDB就是使用C++编写的.如果Hadoopor和ElasticSearch逐渐发展,那么Java就能有潜力在大数据技术领域上得到更大的发展空间。
3、软件工具
很多有用的软件和开发工具都是运用Java编写和开发的,例如Ecilpse,InetelliJIdea和NetbansIDE.。我认为这些都是最经常使用的用Java编写的桌面应用程序。就如上面所说,Swing曾经在图形用户界面的客户端开发非常流行,它们大多数应用在金融服务领域以及投资银行。虽然现在JavaFx正在逐渐地流行起来,但仍然无法替代Swing,而且C#已经在大部分金融领域中代替了Swing。
4、网站应用
Java同样也在电子商务和网站开发上有着广泛的运用。你可以运用很多RESTfull架构,这些架构是用SpringMVC,Struts2.0和类似的框架开发出来的。 甚至简单的Servlet,JSP和Struts在各种政府项目也是备受欢迎,许多政府,医疗,保险,教育,国防和其他部门的网站都是建立在Java之上的。
5、在金融服务行业的服务器应用
Java在金融服务业有着很大应用。很多的全球性投资银行例如GoldmanSachs(高盛投资公司),Citigroup(花旗集团),Barclays(巴克莱银行),StandardCharted(英国渣打银行)和一些其他银行都用Java编写前台和后台的电子交易系统,结算、信息确认系统,数据处理项目和以及其他的项目。
Java被运用于编写服务端应用,但大多数没有前端,都是从一个服务端(上一级)接受数据,处理数据后发向其他的处理系统(下一级)。 JavaSwing由于能开发出图形用户界面的客户端供交易者使用而备受欢迎,但是现在C#正在快速地取代Swing的市场,这让Swing倍有压力。
6、交易系统
第三方交易系统,金融服务行业的一大部分,同样也是使用Java编写的。例如像Murex这种受欢迎的交易系统,运用于与许多的银行前端链接,同样也是用Java编写的。
7、J2MEApps
虽然IOS和Android的到来几乎扼杀了J2ME的市场,但是仍然有很多的低端诺基亚和三星手机在使用着J2ME。 曾经有段时间大部分的游戏,手机应用都是利用MIDP和CLDC,或者J2ME部分平台编写的,以适用于Android系统。J2ME依然在蓝光、磁卡、机顶盒等产品中流行着。app之所以如此流行是因为对于所有的诺基亚手机,app仍然适用于J2ME。
8、高频交易领域
Java平台已经大大提高了性能特点和JITS,并且Java也拥有像C++级别的传输性能。因此,Java也流行于编写高并发系统。 虽然Java的传输性能不比C++,但你可以不用考虑Java的安全性,可移植性和可维护性等问题(Java内部已经实现好了),而且Java有着更快的运行速度。安全性等问题会使一个没有经验的C++程序员编写的应用程序变得更加缓慢和不可靠。
9、科学应用
现在Java经常是科学应用的默认选择,包括了自然语言处理。这最主要的原因是因为Java比起C++或者其他语言有更加的安全,可移植,可维护,而且Java有着更好的高级并发工具。
10、安卓Apps
如果你想知道Java应用在哪里,你离答案并不远。打开你的安卓手机或者任何的App,它们完全是用有着谷歌AndroidAPI的Java编程语言编写的,这个API和JDK非常相似。前几年安卓刚开始起步而到今日已经很多Java程序员是安卓App的开发者。
Java作为软件开发公司默认的开发语言,在金融服务行业、投资银行和电子商务web应用领域获得了很大应用,任何学习Java的人员都会为自己赢得光明的未来。
Ⅷ 大数据分析应该掌握哪些基础知识呢
前言,学大数据要先换电脑:
保证电脑4核8G内存64位操作系统,尽量有ssd做系统盘,否则卡到你丧失信心。硬盘越大越好。
1,语言要求
java刚入门的时候要求javase。
scala是学习spark要用的基本使用即可。
后期深入要求:
java NIO,netty,多线程,ClassLoader,jvm底层及调优等,rpc。
2,操作系统要求
linux 基本的shell脚本的使用。
crontab的使用,最多。
cpu,内存,网络,磁盘等瓶颈分析及状态查看的工具。
scp,ssh,hosts的配置使用。
telnet,ping等网络排查命令的使用
3,sql基本使用
sql是基础,hive,sparksql等都需要用到,况且大部分企业也还是以数据仓库为中心,少不了sql。
sql统计,排序,join,group等,然后就是sql语句调优,表设计等。
4,大数据基本了解
Zookeeper,hadoop,hbase,hive,sqoop,flume,kafka,spark,storm等这些框架的作用及基本环境的搭建,要熟练,要会运维,瓶颈分析。
5,maprece及相关框架hive,sqoop
深入了解maprece的核心思想。尤其是shuffle,join,文件输入格式,map数目,rece数目,调优等。
6,hive和hbase等仓库
hive和hbase基本是大数据仓库的标配。要回用,懂调优,故障排查。
hbase看浪尖hbase系列文章。hive后期更新。
7,消息队列的使用
kafka基本概念,使用,瓶颈分析。看浪尖kafka系列文章。
8,实时处理系统
storm和spark Streaming
9,spark core和sparksql
spark用于离线分析的两个重要功能。
10,最终方向决策
a),运维。(精通整套系统及故障排查,会写运维脚本啥的。)
b),数据分析。(算法精通)
c),平台开发。(源码精通)
自学还是培训?
无基础的同学,培训之前先搞到视频通学一遍,防止盲目培训跟不上讲师节奏,浪费时间,精力,金钱。
有基础的尽量搞点视频学基础,然后跟群里大牛交流,前提是人家愿意,
想办法跟大牛做朋友才是王道。
Ⅸ 大数据学习编程么
需要学习编程的,不然有些工作是没办法完成的,达内这些大型培训公司就有相关的课程体系的