导航:首页 > 编程语言 > hdfsjavaapi远程

hdfsjavaapi远程

发布时间:2023-01-23 19:15:42

1. 如何使用java API读写HDFS

import java.io.BufferedInputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.net.URI;
import java.util.Date;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.BlockLocation;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hdfs.DistributedFileSystem;
import org.apache.hadoop.hdfs.protocol.DatanodeInfo;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.util.Progressable;

2. HDFS 系统架构

HDFS Architecture

Hadoop Distributed File System (HDFS) 是设计可以运行于普通商业硬件上的分布式文件系统。它跟现有的分布式文件系统有很多相通的地方,但是区别也是显著的。HDFS具有高度容错性能,被设计运行于低成本硬件上。HDFS可以向应用提供高吞吐带宽,适合于大数据应用。HDFS 放宽了一些 POSIX 的要求,以开启对文件系统数据的流式访问。HDFS 最初是作为Apache Nutch web 搜索引擎项目的基础设施开发的。HDFS 现在是 Apache Hadoop 核心项目的一部分。

HDFS是主从架构。一个HDFS集群包含一个NameNode,一个管理文件系统命名空间和控制客户端访问文件的master server。以及,若干的 DataNodes,通常集群的每个node一个,管理运行DataNode的节点上的存储。HDFS 发布一个文件系统命名空间,并允许用户数据已文件的形式存储在上面。内部,一个文件被分成一个或多个块,存储在一组DataNodes上。NameNode 执行文件系统命名空间操作,比如:打开、关闭、重命名文件或目录。它还确定块到DataNodes的映射。DataNodes 负责向文件系统客户端提供读写服务。DataNodes 根据 NameNode 的指令执行块的创建、删除以及复制。

NameNode 和 DataNode 是设计运行于普通商业机器的软件。这些机器通常运行 GNU/Linux 操作系统。HDFS 是Java 语言编写的;任何支持Java的机器都可以运行NameNode or DataNode 软件。使用高移植性Java语言,意味着HDFS可以部署在很大范围的机器上。一个典型的部署就是一台特定的机器只运行NameNode 软件,而集群内的其他机器运行DataNode 软件的一个实例。这种架构不排除一台机器上运行多个DataNodes ,但是在实际部署中很少见。

单 NameNode 节点的存在大大简化了架构。NameNode 是所有HDFS 元数据的仲裁和仓库。系统设计上,用户数据永远不经过NameNode。

HDFS 支持传统的文件分级组织。用户或应用可以创建目录,并在目录内存储文件。 文件系统命名空间的层次结构跟其他文件系统类似;可以创建、删除、移动、重命名文件。HDFS 支持 user quotas 和 access permissions 。 HDFS 不支持软、硬链接。但是,HDFS 架构不排除实现这些功能。

虽然HDFS遵守 文件系统命名约定 ,一些路径和名称 (比如/.reserved 和.snapshot ) 保留了。比如功能 transparent encryption 和 snapshot 就使用的保留路径。

NameNode 维护文件系统命名空间。任何文件系统命名空间或属性的变化,都会被NameNode记录。 应用可以指定HDFS应维护的文件副本数量。文件副本的数量被称为该文件的复制因子 replication factor 。该信息存储于NameNode。

HDFS 被设计用于在一个大规模集群上跨机器可靠地存储巨大的文件。它以一序列的块的方式存储文件。每个文件都可以配置块尺寸和复制因子。

一个文件除了最后一个块外,其他的块一样大。在 append 和 hsync 添加了可变长度块的支持后,用户可以启动一个新的块,而不用填充最后一个块到配置的块大小。

应用可以指定一个文件的副本数量。复制因子可以在创建的时候指定,也可以以后更改。HDFS的文件只写一次(除了 appends 和 truncates) ,并在任何时候只允许一个 writer 。

NameNode 指定块复制的所有决策。它周期性的从集群的每个DataNodes 接受 Heartbeat 和 Blockreport。Heartbeat 的接受代表 DataNode 工作正常。Blockreport 包含了DataNode上所有块的清单。

副本的位置对HDFS的可靠性和性能至关重要。副本位置的优化是HDFS和其他大多数分布式文件系统的区别。这是一个需要大量调优和经验的特性。Rack-aware 复制策略的目的就是提高数据可靠性,可用性和网络带宽利用率。当前副本位置策略的实现是这个方向的第一步。实施该策略的短期目标是在生产环境验证它,了解其更多的行为,为测试和研究更复杂的策略打下基础。

大型HDFS实例运行在跨多个Rack的集群服务器上。不同rack的两个node通信需要通过交换机。大多数情况下,同一rack内的带宽大于rack之间的带宽。

NameNode 通过在 Hadoop Rack Awareness 内的进程描述 判断DataNode 属于哪个rack id。一个简单但是并非最佳的策略是将副本分布于不同的racks。这可以防止整个机架发生故障时丢失数据,并允许在读取数据时使用多个机架的带宽。该策略在群集中均匀地分布副本,使得组件故障时很容易平衡负载。 但是,该策略会增加写入成本,因为写入操作需要将块传输到多个机架。

一般,复制因子设置为3, HDFS 的分布策略是:如果writer在datanode上则将一个副本放到本地机器, 如果writer不在datanode上则将一个副本放到writer所在机柜的随机datanode 上;另一个副本位于不同机架的node上;最后一个副本位于同一远程机架的不同node上。 该策略减少了机架间的写流量,提升了写性能。机架故障的概率远小于节点故障的概率;此策略不会影响数据可靠性和可用性承诺。但是,在读取数据时,它确实减少了聚合带宽,因为块存储于两个机柜而不是三个机柜内。使用此策略,副本不会均匀的分布于机架上。1/3 副本 位于同一节点, 2/3 副本位于同一机架, 另1/3副本位于其他机架。该策略提升了写性能而不影响数据可靠性和读性能。

如果复制因子大于3,那么第4个及以后的副本则随机放置,只要满足每个机架的副本在(replicas - 1) / racks + 2)之下。

因为 NameNode 不允许 DataNodes 拥有同一个块的多个副本,所以副本的最大数就是DataNodes的数量。

在把对 存储类型和存储策略 的支持添加到 HDFS 后,除了上面介绍的rack awareness外, NameNode 会考虑其他副本排布的策略。NameNode 先基于rack awareness 选择节点,然后检查候选节点有文件关联的策略需要的存储空间。 如果候选节点没有该存储类型, NameNode 会查找其他节点。如果在第一条路径中找不到足够的节点来放置副本,NameNode会在第二条路径中查找具有回滚存储类型的节点。 、

当前,这里描述的默认副本排布策略正在使用中。

为了最小化全局带宽消耗和读取延迟, HDFS 会尝试从最靠近reader的副本响应读取请求。如果在reader节点的同一机架上上存在副本,则该副本有限响应读请求。如果HDFS集群跨多个数据中心,则本地数据中心优先。

启动时,NameNode 会进入一个称为 Safemode 的特殊状态。当NameNode处于Safemode状态时,不会复制数据块。NameNode从DataNodes接收Heartbeat和Blockreport消息。Blockreport包含DataNode托管的数据块列表。每个块都指定了最小副本数。当数据块的最小副本数已与NameNode签入时,该块被认为是安全复制的。在NameNode签入安全复制数据块的已配置百分比(加上额外的30秒)后,NameNode退出Safemode状态。然后,它判断列表内的数据块清单是否少于副本指定的数量。NameNode 然后复制这些块给其他 DataNodes。

HDFS 命名空间由 NameNode 存储。NameNode 使用事务日志 EditLog 来持久化的保存系统元数据的每次变更。比如,在HDFS创建一个新文件,NameNode会在 EditLog 插入一条记录来指示该变更。类似的,变更文件的复制因子也会在 EditLog 插入一条新记录。NameNode 以文件的形式,将 EditLog 保存在本地OS文件系统上。整个文件系统命名空间,包括块到文件的映射、文件系统属性,都存储于名字为 FsImage 的文件内。 FsImage 也以文件的形式,存储在NameNode的本地文件系统上。

NameNode 将包含整个文件系统和块映射的image保存在内存中。当NameNode启动时,或检查点被预先定义的阈值触发时,它会从磁盘读取 FsImage 和 EditLog ,把 EditLog 内的事物应用到内存中的FsImage,再将新版本刷新回磁盘的新 FsImage 。然后会截断旧的 EditLog ,因为它的事物已经应用到了持久化的 FsImage 上。 这个过程称为检查点 checkpoint 。检查点的目的是通过对文件系统元数据进行快照并保存到FsImage,来确保HDFS拥有文件系统元数据的一致性视图。尽管读取 FsImage 是高效的,但是对 FsImage 直接增量修改是不高效的。不是对每次编辑修改 FsImage ,而是将每次编辑保存到 Editlog 。在检查点期间,将 Editlog 的变更应用到 FsImage 。一个检查点可以在固定周期(dfs.namenode.checkpoint.period)(以秒为单位)触发,也可以文件系统事物数量达到某个值(dfs.namenode.checkpoint.txns)的时候触发。

DataNode 在本地文件系统上以文件的形式存储 HDFS data 。DataNode 不知道 HDFS 文件。它将HDFS data 的每个块以独立的文件存储于本地文件系统上。DataNode 不在同一目录创建所有的文件。而是,使用heuristic来确定每个目录的最佳文件数量,并适当的创建子目录。在一个目录创建所有的本地文件是不好的,因为本地文件系统可能不支持单目录的海量文件数量。当DataNode启动的时候,它扫描本地文件系统,生成与本地文件系统一一对应的HDFS数据块列表,然后报告给NameNode。这个报告称为 Blockreport。

所有的HDFS通信协议都在TCP/IP协议栈上。客户端与NameNode指定的端口建立连接。与NameNode以ClientProtocol 通信。DataNodes与NameNode以DataNode Protocol进行通信。远程过程调用(RPC)封装了Client Protocol 和 DataNode Protocol。设计上,NameNode从不启动任何RPCs。相反,它只应答DataNodes or clients发出的RPC请求。

HDFS的主要目标是可靠的存储数据,即使是在故障的情况下。常见故障类型有三种: NameNode failures , DataNode failures network partitions

每个DataNode都周期性的向NameNode发送心跳信息。 一个 network partition 可能导致DataNodes子集丢失与NameNode的连接。NameNode会基于心跳信息的缺失来侦测这种情况。NameNode将没有心跳信息的DataNodes标记为 dead ,并不再转发任何IO请求给它们。任何注册到dead DataNode的数据对HDFS将不再可用。DataNode death会导致某些块的复制因子低于它们指定的值。NameNode不断跟踪需要复制的块,并在必要时启动复制。很多因素会导致重新复制:DataNode不可用,副本损坏,DataNode上硬盘故障,复制因子增加。

标记 DataNodes dead 的超时时间保守地设置了较长时间 (默认超过10分钟) 以避免DataNodes状态抖动引起的复制风暴。对于性能敏感的应用,用户可以设置较短的周期来标记DataNodes为过期,读写时避免过期节点。

HDFS 架构支持数据再平衡schemes。如果一个DataNode的空余磁盘空间低于阈值,sheme就会将数据从一个DataNode 移动到另外一个。在某些文件需求突然增长的情况下,sheme可能会在集群内动态的创建额外的副本,并再平衡其他数据。这些类型的数据再平衡schemes还没有实现。

有可能从DataNode获取的数据块,到达的时候损坏了。这种损坏可能是由于存储设备故障、网络故障、软件bug。HDFS客户端软件会HDFS的内容进行校验。当客户端创建HDFS文件的时候,它计算文件每个块的校验值,并以独立的隐藏文件存储在同一HDFS命名空间内。当客户端检索文件时候,它会校验从每个DataNode获取的数据,是否与关联校验文件内的校验值匹配。 如果不匹配,客户端可以从另外拥有副本块的DataNode检索。

FsImage 和 EditLog 是HDFS的核心数据结构。这些文件的损坏将导致HDFS实例异常。 因此,NameNode可以配置为支持多 FsImage 和 EditLog 副本模式。任何对 FsImage or EditLog 的更新都会导致每个 FsImages 和 EditLogs 的同步更新。 FsImage 和 EditLog 的同步更新会导致降低命名空间每秒的事物效率。但是,这种降级是可以接受的,因为HDFS应用是数据密集型,而不是元数据密集型。当NameNode重启的时候,它会选择最新的一致的 FsImage 和 EditLog 。

另外一种提供故障恢复能力的办法是多NameNodes 开启HA,以 shared storage on NFS or distributed edit log (called Journal)的方式。推荐后者。

Snapshots - 快照,支持在特定时刻存储数据的副本。快照功能的一个用法,可以回滚一个故障的HDFS实例到已知工作良好的时候。

HDFS被设计与支持超大的文件。与HDFS适配的软件都是处理大数据的。这些应用都只写一次,但是它们会读取一或多次,并且需要满足流式读速度。HDFS支持文件的 一次写入-多次读取 语义。 HDFS典型的块大小是128 MB.。因此,HDFS文件被分割为128 MB的块,可能的话每个块都位于不同的DataNode上。

当客户端以复制因子3写入HDFS文件时,NameNode以 复制目标选择算法 replication target choosing algorithm 检索DataNodes 列表。该列表包含了承载该数据块副本的DataNodes清单。然后客户端写入到第一个DataNode。第一DataNode逐步接受数据的一部分,将每一部分内容写入到本地仓库,并将该部分数据传输给清单上的第二DataNode。第二DataNode,按顺序接受数据块的每个部分,写入到仓库,然后将该部分数据刷新到第三DataNode。最终,第三DataNode将数据写入到其本地仓库。
因此,DataNode从管道的前一个DataNode获取数据,同时转发到管道的后一个DataNode。因此,数据是以管道的方式从一个DataNode传输到下一个的。

应用访问HDFS有很多方式。原生的,HDFS 提供了 FileSystem Java API 来给应用调用。还提供了 C language wrapper for this Java API 和 REST API 。另外,还支持HTTP浏览器查看HDFS实例的文件。 通过使用 NFS gateway ,HDFS还可以挂载到客户端作为本地文件系统的一部分。

HDFS的用户数据是以文件和目录的形式组织的。它提供了一个命令行接口 FS shell 来提供用户交互。命令的语法类似于其他shell (比如:bash, csh)。如下是一些范例:

FS shell 的目标是向依赖于脚本语言的应用提供与存储数据的交互。

DFSAdmin 命令用于管理HDFS集群。这些命令仅给HDFS管理员使用。如下范例:

如果启用了回收站配置,那么文件被 FS Shell 移除时并不会立即从HDFS删除。HDFS会将其移动到回收站目录(每个用户都有回收站,位于 /user/<username>/.Trash )。只要文件还在回收站内,就可以快速恢复。

最近删除的文件大多数被移动到 current 回收站目录 ( /user/<username>/.Trash/Current ),在配置周期内,HDFS给 current目录内的文件创建检查点 checkpoints (位于 /user/<username>/.Trash/<date> ) ,并删除旧的检查点。参考 expunge command of FS shell 获取更多关于回收站检查点的信息。

在回收站过期后,NameNode从HDFS命名空间删除文件。删除文件会将文件关联的块释放。注意,在用户删除文件和HDFS增加free空间之间,会有一个明显的延迟。

如下范例展示了FS Shell如何删除文件。我们在delete目录下创建两个文件(test1 & test2)

我们删除文件 test1。如下命令显示文件被移动到回收站。

现在我们尝试以skipTrash参数删除文件,该参数将不将文件发送到回收站。文件将会从HDFS完全删除。

我们检查回收站,只有文件test1。

如上,文件test1进了回收站,文件test2被永久删除了。

当缩减文件的复制因子时,NameNode选择可以被删除的多余副本。下一个Heartbeat会通报此信息给DataNode。DataNode然后会删除响应的块,相应的剩余空间会显示在集群内。同样,在setReplication API调用完成和剩余空间在集群显示之间会有一个时间延迟。

Hadoop JavaDoc API .

HDFS source code: http://hadoop.apache.org/version_control.html

3. 体系里表明与远程支持场所关系和接口的文件有哪些

hadoop提供了许多文件系统的接口,用户可使用URI方案选取合适的文件系统来实现交互。
(1)接口
hadoop是使用Java编写的。而Hadoop中不同文件系统之间的交互是由Java API进行调节的。事实上,前面使用的文件系统的shell就是一个java应用,它使用java文件系统来提供文件系统操作。即使其他文件系统比如FTP、S3都有自己的访问工具,这些接口在HDFS中还是广泛使用,主要用来进行hadoop文件系统之间的协作。
(2)Thrift
上面提到可以通过java API 与Hadoop的文件系统进行交互,而对于其它非java应用访问hadoop文件系统则比较麻烦。Thriftfs分类单元中的Thrift API 可通过将Hadoop文件系统展示为一个Apache Thrift服务来填补这个不足,让任何有Thrift绑定的语言都能轻松地与Hadoop文件系统进行交互。Thrift是由Facebook公司开发的一种可伸缩的跨语言服务的发展软件框架。Thrift解决了各系统间大数据量的传输通信,以及系统之间语言环境不同而需要跨平台的问题。在多种不同的语言之间通信时,Thrift可以作为二进制的高性能的通信中间件,它支持数据序列化和多种类型的RPC服务。
(3)C语言库
hadoop提供了映射java文件系统接口的c语言库----libhdfs。libhdfs可以编写为一个访问HDFS的C语言库,实际上,它可以访问任意的Hadoop文件系统,也可以使用JNI(Java Native Interface)来调用java文件系统的客户端。
(4)FUSE
FUSE允许文件系统整合为一个Unix文件系统并在用户空间中执行。通过使用Hadoop Fuse-DFS的contrib模块支持任意的Hadoop文件系统作为一个标准文件系统进行挂载,便可以使用UNIX的工具和文件系统进行交互,还可以通过任意一种编程语言使用POSIX库来访问文件系统。
(5)WebDAV
WebDAV是一系列支持编辑和更新文件的HTTP扩展。在大部分的操作系统中,WebDAV共享都可以作为文件系统进行挂载,因此,通过WebDEV向外提供HDFS或其它Hadoop文件系统,可以将HDFS作为一个标准的文件系统进行访问。
(6)其他HDFS接口
HTTP-HDFS定义了一个只读接口,用来在HTTP上检索目录列表和数据。NameNode的嵌入式Web服务器运行在50070端口上,以XML格式提供服务,文件数据DataNood通过它们的Web服务器50075端口向NameNode提供。这个协议并不局限于某个HDFS版本,所以用户可以自己编写使用HTTP从运行不同版本的Hadoop的HDFS中读取数据。HftpFileSystem就是其中一种实现,它是一个通过HTTP和HDFS交流的hadoop文件系统,是HTTPS的变体。

4. 如何使用Java API读写HDFS

//流读入和写入
InputStream in=null;
//获取HDFS的conf
//读取HDFS上的文件系统
FileSystem hdfs=FileSystem.get(conf);
//使用缓冲流,进行按行读取的功能
BufferedReader buff=null;
//获取日志文件的根目录
Path listf =new Path("hdfs://10.2.143.5:9090/root/myfile/");
//获取根目录下的所有2级子文件目录
FileStatus stats[]=hdfs.listStatus(listf);
//自定义j,方便查看插入信息
int j=0;
for(int i = 0; i < stats.length; i++){
//获取子目录下的文件路径
FileStatus temp[]=hdfs.listStatus(new Path(stats[i].getPath().toString()));
for(int k = 0; k < temp.length;k++){
System.out.println("文件路径名:"+temp[k].getPath().toString());
//获取Path
Path p=new Path(temp[k].getPath().toString());
//打开文件流
in=hdfs.open(p);
//BufferedReader包装一个流
buff=new BufferedReader(new InputStreamReader(in));
String str=null;
while((str=buff.readLine())!=null){

System.out.println(str);
}
buff.close();
in.close();

}

5. hbase单机模式下,使用java API远程连接hbase的问题。

首先你应该看Master进程是否已经成功启动,检查下master的60010监控界面。这日志报的是连接拒绝 ,或者关闭防火墙

极有可能是你PC机网络无法连接到虚拟机里边,你可以从本机telnet下虚拟机上master的端口,看下能连上不

6. 如何使用Java API访问HDFS为目录设置配额

Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统。它和现有的分布式文件系统有很多共同点。但同时,它和其他的分布式文件系统的区别也是很明显的。HDFS是一个高度容错性的系统,适合部署在廉价的机器上。HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。HDFS放宽了一部分POSIX约束,来实现流式读取文件系统数据的目的。HDFS在最开始是作为Apache Nutch搜索引擎项目的基础架构而开发的。HDFS是Apache Hadoop Core项目的一部分。
HDFS有着高容错性(fault-tolerant)的特点,并且设计用来部署在低廉的(low-cost)硬件上。而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求(requirements)这样可以实现流的形式访问(streaming access)文件系统中的数据。

7. java怎么连接hdfs文件系统,需要哪些包

apache的Hadoop项目提供一类api可以通过java工程操作hdfs中的文件,包括:文件打开,读写,删除等、目录的创建,删除,读取目录中所有文件等。
1、到http://hadoop.apache.org/releases.html下载Hadoop,解压后把所有jar加入项目的lib里
2、程序处理步骤: 1)得到Configuration对象,2)得到FileSystem对象,3)进行文件操作,简单示例如下:
/**
*
*/
package org.jrs.wlh;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;

/**
* @PutMeger.java
* java操作hdfs 往 hdfs中上传数据
* @version $Revision$</br>
* update: $Date$
*/
public class PutMeger {

public static void main(String[] args) throws IOException {

String[] str = new String[]{"E:\\hadoop\\UploadFileClient.java","hdfs://master:9000/user/hadoop/inccnt.java"};
Configuration conf = new Configuration();
FileSystem fileS= FileSystem.get(conf);
FileSystem localFile = FileSystem.getLocal(conf); //得到一个本地的FileSystem对象

Path input = new Path(str[0]); //设定文件输入保存路径
Path out = new Path(str[1]); //文件到hdfs输出路径

try{
FileStatus[] inputFile = localFile.listStatus(input); //listStatus得到输入文件路径的文件列表
FSDataOutputStream outStream = fileS.create(out); //创建输出流
for (int i = 0; i < inputFile.length; i++) {
System.out.println(inputFile[i].getPath().getName());
FSDataInputStream in = localFile.open(inputFile[i].getPath());

byte buffer[] = new byte[1024];
int bytesRead = 0;
while((bytesRead = in.read(buffer))>0){ //按照字节读取数据
System.out.println(buffer);
outStream.write(buffer,0,bytesRead);
}

in.close();
}

}catch(Exception e){
e.printStackTrace();
}
}

}

8. 使用java api调用HDFS文件系统时,遇到重复的代码,怎么解决

利用符集编码。
因为HDFS支持6种字符集编码,每个本地文件编码方式又是极可能不一样的,我们上传本地文件的时候其实就是把文件编码成字节流上传到文件系统存储。

9. 如何使用Java API读写HDFS

HDFS是Hadoop生态系统的根基,也是Hadoop生态系统中的重要一员,大部分时候,我们都会使用Linuxshell命令来管理HDFS,包括一些文件的创建,删除,修改,上传等等,因为使用shell命令操作HDFS的方式,相对比较简单,方便,但是有时候,我们也需要通过编程的方式来实现对文件系统的管理。比如有如下的一个小需求,要求我们实现读取HDFS某个文件夹下所有日志,经过加工处理后在写入到HDFS上,或者存进Hbase里,或者存进其他一些存储系统。这时候使用shell的方式就有点麻烦了,所以这时候我们就可以使用编程的方式来完成这件事了,当然散仙在这里使用的是原生的Java语言的方式,其他的一些语言例如C++,PHP,Python都可以实现,散仙在这里不给出演示了,(其实散仙也不会那些语言,除了刚入门的Python)。下面,散仙给出代码,以供参考:viewsourceprint?packagecom.java.api.hdfs;importjava.io.BufferedReader;importjava.io.IOException;importjava.io.InputStream;importjava.io.InputStreamReaderimportorg.apache.hadoop.conf.Configuration;importorg.apache.hadoop.fs.FileStatus;importorg.apache.hadoop.fs.FileSystem;importorg.apache.hadoop.fs.Path;/***@author三劫散仙*JavaAPI操作HDFS*工具类****/publicclassOperaHDFS{publicstaticvoidmain(String[]args)throwsException{//System.out.println("aaa");//uploadFile();//createFileOnHDFS();//deleteFileOnHDFS();//createDirectoryOnHDFS();//deleteDirectoryOnHDFS();//renameFileOrDirectoryOnHDFS();readHDFSListAll();}/****加载配置文件***/staticConfigurationconf=newConfiguration();/***重名名一个文件夹或者文件()throwsException{FileSystemfs=FileSystem.get(conf);Pathp1=newPath("hdfs://10.2.143.5:9090/root/myfile/my.txt");fs.rename(p1,p2);System.out.println("重命名文件夹或文件成功..");}/*****读取HDFS某个文件夹的所有*文件,并打印****/()throwsException{//流读入和写入InputStreamin=null;//获取HDFS的conf//读取HDFS上的文件系统FileSystemhdfs=FileSystem.get(conf);//使用缓冲流,进行按行读取的功能BufferedReaderbuff=null;//获取日志文件的根目录Pathlistf=newPath("hdfs://10.2.143.5:9090/root/myfile/");//获取根目录下的所有2级子文件目录FileStatusstats[]=hdfs.listStatus(listf);//自定义j,方便查看插入信息intj=0;for(inti=0;i

10. Hadoop系列之HDFS架构

    本篇文章翻译了Hadoop系列下的 HDFS Architecture ,原文最初经过笔者翻译后大概有6000字,之后笔者对内容进行了精简化压缩,从而使笔者自己和其他读者们阅读本文时能够更加高效快速的完成对Hadoop的学习或复习。本文主要介绍了Hadoop的整体架构,包括但不限于节点概念、命名空间、数据容错机制、数据管理方式、简单的脚本命令和垃圾回收概念。

    PS:笔者新手一枚,如果看出哪里存在问题,欢迎下方留言!

    Hadoop Distributed File System(HDFS)是高容错、高吞吐量、用于处理海量数据的分布式文件系统。

    HDFS一般由成百上千的机器组成,每个机器存储整个数据集的一部分数据,机器故障的快速发现与恢复是HDFS的核心目标。

    HDFS对接口的核心目标是高吞吐量而非低延迟。

    HDFS支持海量数据集合,一个集群一般能够支持千万以上数量级的文件。

    HDFS应用需要对文件写一次读多次的接口模型,文件变更只支持尾部添加和截断。

    HDFS的海量数据与一致性接口特点,使得迁移计算以适应文件内容要比迁移数据从而支持计算更加高效。

    HDFS支持跨平台使用。

    HDFS使用主从架构。一个HDFS集群由一个NameNode、一个主服务器(用于管理系统命名空间和控制客户端文件接口)、大量的DataNode(一般一个节点一个,用于管理该节点数据存储)。HDFS对外暴露了文件系统命名空间并允许在文件中存储用户数据。一个文件被分成一个或多个块,这些块存储在一组DataNode中。NameNode执行文件系统命名空间的打开关闭重命名等命令并记录着块和DataNode之间的映射。DataNode用于处理客户端的读写请求和块的相关操作。NameNode和DataNode一般运行在GNU/Linux操作系统上,HDFS使用Java语言开发的,因此NameNode和DataNode可以运行在任何支持Java的机器上,再加上Java语言的高度可移植性,使得HDFS可以发布在各种各样的机器上。一个HDFS集群中运行一个NameNode,其他机器每个运行一个(也可以多个,非常少见)DataNode。NameNode简化了系统的架构,只用于存储所有HDFS元数据,用户数据不会进入该节点。下图为HDFS架构图:

    HDFS支持传统的分层文件管理,用户或者应用能够在目录下创建目录或者文件。文件系统命名空间和其他文件系统是相似的,支持创建、删除、移动和重命名文件。HDFS支持用户数量限制和访问权限控制,不支持软硬链接,用户可以自己实现软硬链接。NameNode控制该命名空间,命名空间任何变动几乎都要记录到NameNode中。应用可以在HDFS中对文件声明复制次数,这个次数叫做复制系数,会被记录到NameNode中。

    HDFS将每个文件存储为一个或多个块,并为文件设置了块的大小和复制系数从而支持文件容错。一个文件所有的块(除了最后一个块)大小相同,后来支持了可变长度的块。复制系数在创建文件时赋值,后续可以更改。文件在任何时候只能有一个writer。NameNode负责块复制,它周期性收到每个数据节点的心跳和块报告,心跳表示数据节点的正常运作,块报告包含了这个DataNode的所有块。

    副本存储方案对于HDFS的稳定性和性能至关重要。为了提升数据可靠性、灵活性和充分利用网络带宽,HDFS引入了机架感知的副本存储策略,该策略只是副本存储策略的第一步,为后续优化打下基础。大型HDFS集群一般运行于横跨许多支架的计算机集群中,一般情况下同一支架中两个节点数据传输快于不同支架。一种简单的方法是将副本存放在单独的机架上,从而防止丢失数据并提高带宽,但是增加了数据写入的负担。一般情况下,复制系数是3,HDFS存储策略是将第一份副本存储到本地机器或者同一机架下一个随机DataNode,另外两份副本存储到同一个远程机架的不同DataNode。NameNode不允许同一DataNode存储相同副本多次。在机架感知的策略基础上,后续支持了 存储类型和机架感知相结合的策略 ,简单来说就是在机架感知基础上判断DataNode是否支持该类型的文件,不支持则寻找下一个。

    HDFS读取数据使用就近原则,首先寻找相同机架上是否存在副本,其次本地数据中心,最后远程数据中心。

    启动时,NameNode进入安全模式,该模式下不会发生数据块复制,NameNode接收来自DataNode的心跳和块报告,每个块都有一个最小副本数量n,数据块在NameNode接受到该块n次后,认为这个数据块完成安全复制。当完成安全复制的数据块比例达到一个可配的百分比值并再过30s后,NameNode退出安全模式,最后判断是否仍然存在未达到最小复制次数的数据块,并对这些块进行复制操作。

    NameNode使用名为EditLog的事务日志持续记录文件系统元数据的每一次改动(如创建文件、改变复制系数),使用名为FsImage的文件存储全部的文件系统命名空间(包括块到文件的映射关系和文件系统的相关属性),EditLog和FsImage都存储在NameNode本地文件系统中。NameNode在内存中保存着元数据和块映射的快照,当NameNode启动后或者某个配置项达到阈值时,会从磁盘中读取EditLog和FsImage,通过EditLog新的记录更新内存中的FsImage,再讲新版本的FsImage刷新到磁盘中,然后截断EditLog中已经处理的记录,这个过程就是一个检查点。检查点的目的是确保文件系统通过在内存中使用元数据的快照从而持续的观察元数据的变更并将快照信息存储到磁盘FsImage中。检查点通过下面两个配置参数出发,时间周期(dfs.namenode.checkpoint.period)和文件系统事务数量(dfs.namenode.checkpoint.txns),二者同时配置时,满足任意一个条件就会触发检查点。

    所有的HDFS网络协议都是基于TCP/IP的,客户端建立一个到NameNode机器的可配置的TCP端口,用于二者之间的交互。DataNode使用DataNode协议和NameNode交互,RPC包装了客户端协议和DataNode协议,通过设计,NameNode不会发起RPC,只负责响应来自客户端或者DataNode的RPC请求。

    HDFS的核心目标是即使在失败或者错误情况下依然能够保证数据可靠性,三种常见失败情况包括NameNode故障、DataNode故障和network partitions。

    网络分区可能会导致部分DataNode市区和NameNode的连接,NameNode通过心跳包判断并将失去连接的DataNode标记为挂掉状态,于是所有注册到挂掉DataNode的数据都不可用了,可能会导致部分数据块的复制数量低于了原本配置的复制系数。NameNode不断地追踪哪些需要复制的块并在必要时候进行复制,触发条件包含多种情况:DataNode不可用、复制乱码、硬件磁盘故障或者认为增大负值系数。为了避免DataNode的状态不稳定导致的复制风暴,标记DataNode挂掉的超时时间设置比较长(默认10min),用户可以设置更短的时间间隔来标记DataNode为陈旧状态从而避免在对读写性能要求高的请求上使用这些陈旧节点。

    HDFS架构兼容数据各种重新平衡方案,一种方案可以在某个DataNode的空闲空间小于某个阈值时将数据移动到另一个DataNode上;在某个特殊文件突然有高的读取需求时,一种方式是积极创建额外副本并且平衡集群中的其他数据。这些类型的平衡方案暂时还未实现(不太清楚现有方案是什么...)。

    存储设备、网络或者软件的问题都可能导致从DataNode获取的数据发生乱码,HDFS客户端实现了对文件内容的校验,客户端在创建文件时,会计算文件中每个块的校验值并存储到命名空间,当客户端取回数据后会使用校验值对每个块进行校验,如果存在问题,客户端就会去另一个DataNode获取这个块的副本。

    FsImage和EditLog是HDFS的核心数据结构,他们的错误会导致整个HDFS挂掉,因此,NameNode应该支持时刻维持FsImage和EditLog的多分复制文件,它们的任何改变所有文件应该同步更新。另一个选择是使用 shared storage on NFS 或者 distributed edit log 支持多个NameNode,官方推荐 distributed edit log 。

    快照能够存储某一特殊时刻的数据副本,从而支持HDFS在发生错误时会滚到上一个稳定版本。

    HDFS的应用场景是大的数据集下,且数据只需要写一次但是要读取一到多次并且支持流速读取数据。一般情况下一个块大小为128MB,因此一个文件被切割成128MB的大块,且每个快可能分布在不同的DataNode。

    当客户端在复制系数是3的条件下写数据时,NameNode通过目标选择算法收到副本要写入的DataNode的集合,第1个DataNode开始一部分一部分的获取数据,把每个部分存储到本地并转发给第2个DataNode,第2个DataNode同样的把每个部分存储到本地并转发给第3个DataNode,第3个DataNode将数据存储到本地,这就是管道复制。

    HDFS提供了多种访问方式,比如 FileSystem Java API 、 C language wrapper for this Java API 和 REST API ,而且还支持浏览器直接浏览。通过使用 NFS gateway ,客户端可以在本地文件系统上安装HDFS。

    HDFS使用目录和文件的方式管理数据,并提供了叫做 FS shell 的命令行接口,下面有一些简单的命令:

    DFSAdmin命令集合用于管理HDFS集群,这些命令只有集群管理员可以使用,下面有一些简单的命令:

正常的HDFS安装都会配置一个web服务,通过可配的TCP端口对外暴露命名空间,从而使得用户可以通过web浏览器查看文件内容。

如果垃圾回收配置打开,通过FS shell移除的文件不会立刻删除,而是会移动到一个垃圾文件专用的目录(/user/<username>/.Trash),类似回收站,只要文件还存在于那个目录下,则随时可以被回复。绝大多数最近删除的文件都被移动到了垃圾目录(/user/<username>/.Trash/Current),并且HDFS每个一段时间在这个目录下创建一个检查点用于删除已经过期的旧的检查点,详情见 expunge command of FS shell 。在垃圾目录中的文件过期后,NameNode会删除这个文件,文件删除会引起这个文件的所有块的空间空闲,需要注意的是在文件被删除之后和HDFS的可用空间变多之间会有一些时间延迟(个人认为是垃圾回收机制占用的时间)。下面是一些简单的理解删除文件的例子:

    当文件复制系数减小时,NameNode会选择多余的需要删除的副本,在收到心跳包时将删除信息发送给DataNode。和上面一样,这个删除操作也是需要一些时间后,才能在集群上展现空闲空间的增加。

HDFS Architecture

阅读全文

与hdfsjavaapi远程相关的资料

热点内容
android获取sd卡视频文件 浏览:949
苹果手机设置通用网络设置 浏览:83
md298zpa是什么版本 浏览:317
srslog文件在哪个目录 浏览:948
无法找到文件中可删除的图片 浏览:739
dnf90版本副职业 浏览:848
c只读打开文件 浏览:575
如何在电脑文件上添加图片 浏览:297
xslist网站怎么登录 浏览:735
ftp不能直接打开文件 浏览:145
ps调整后的xps文件 浏览:572
小米如何取消wifi和数据同时使用 浏览:347
微信数据6个g怎么清理 浏览:533
找厂房去哪个app 浏览:881
linuxmini 浏览:997
如何找编程类的工作 浏览:286
jsp从mysql读取时间 浏览:680
有什么app可以存app 浏览:603
游戏编程从哪里学的 浏览:738
win8文件布局 浏览:308

友情链接