① 程序前端跟后端有什么区别呀
前端开发主要做的是用户所能看到的前端展示界面;后端开发主要做的是逻辑功能等模块。其实主要区别体现在以下两个方面:知识结构与实现和工作职责。
1、知识结构
(1)展示的方式不同
前端指的是用户可见的界面,网站前端页面也就是网页的页面开发,比如网页上的特效、布局、图片、视频,音频等内容。前端的工作内容就是将美工设计的效果图的设计成浏览器可以运行的网页,并配合后端做网页的数据显示和交互等可视方面的工作内容。
后端是指用户看不见的东西,通常是与前端工程师进行数据交互及网站数据的保存和读取,相对来说后端涉及到的逻辑代码比前端要多得多,后端考虑的是底层业务逻辑的实现,平台的稳定性与性能等。
2、工作职责
前端工程师主要的工作职责分为三大部分,分别是传统的Web前端开发,移动端开发和大数据呈现端开发。Web前端开发主要针对的是PC端开发任务;
移动端开发则包括Android开发、iOS开发和各种小程序开发,在移动互联网迅速发展的带动下,移动端的开发任务量是比较大的,随着5G标准的落地,未来移动端的开发任务将得到进一步的拓展;大数据呈现则主要是基于已有的平台完成最终分析结果的呈现,呈现方式通常也有多种选择,比如大屏展示等。
后端工程师的主要职责也集中在三大部分,分别是平台设计、接口设计和功能实现。平台设计主要是搭建后端的支撑服务容器;接口设计主要针对于不同行业进行相应的功能接口设计,通常一个平台有多套接口,就像卫星导航平台设有民用和军用两套接口一样;功能实现则是完成具体的业务逻辑实现。
② 深入理解V8的垃圾回收原理
V8的垃圾回收策略基于分代回收机制,该机制又基于 世代假说 。该假说有两个特点:
基于这个理论,现代垃圾回收算法根据对象的存活时间将内存进行了分代,并对不同分代的内存采用不同的高效算法进行垃圾回收。
在V8中,将内存分为了新生代(new space)和老生代(old space)。它们特点如下:
V8堆的空间等于新生代空间加上老生代空间。我们可以通过 --max-old-space-size 命令设置老生代空间的最大值, --max-new-space-size 命令设置新生代空间的最大值。老生代与新生代的空间大小在程序初始化时设置,一旦生效则不能动态改变。
默认设置下,64位系统的老生代大小为1400M,32位系统为700M。
对于新生代,它由两个 reserved_semispace_size 组成。每个 reserved_semispace_size 的大小在不同位数的机器上大小不同。默认设置下,在64位与32位的系统下分别为16MB和8MB。我们将新生代、老生代、 reserved_semispace_size 空间大小总结如下表。
在介绍垃圾回收算法之前,我们先了解一下「全停顿」。垃圾回收算法在执行前,需要将应用逻辑暂停,执行完垃圾回收后再执行应用逻辑,这种行为称为 「全停顿」(Stop The World)。例如,如果一次GC需要50ms,应用逻辑就会暂停50ms。
全停顿的目的,是为了解决应用逻辑与垃圾回收器看到的情况不一致的问题。举个例子,在自助餐厅吃饭,高高兴兴地取完食物回来时,结果发现自己餐具被服务员收走了。这里,服务员好比垃圾回收器,餐具就像是分配的对象,我们就是应用逻辑。在我们看来,只是将餐具临时放在桌上,但是服务员看来觉得你已经不需要使用了,因此就收走了。你与服务员对于同一个事物看到的情况是不一致,导致服务员做了与我们不期望的事情。因此,为避免应用逻辑与垃圾回收器看到的情况不一致,垃圾回收算法在执行时,需要停止应用逻辑。
新生代中的对象主要通过 Scavenge 算法进行垃圾回收。Scavenge 的具体实现,主要采用了Cheney算法。
Cheney算法采用复制的方式进行垃圾回收。它将堆内存一分为二,每一部分空间称为 semispace。这两个空间,只有一个空间处于使用中,另一个则处于闲置。使用中的 semispace 称为 「From 空间」,闲置的 semispace 称为 「To 空间」。
过程如下:
对象晋升的条件有两个:
1)对象是否经历过Scavenge回收。对象从 From 空间复制 To 空间时,会检查对象的内存地址来判断对象是否已经经过一次Scavenge回收。若经历过,则将对象从 From 空间复制到老生代中;若没有经历,则复制到 To 空间。
2)To 空间的内存使用占比是否超过限制。当对象从From 空间复制到 To 空间时,若 To 空间使用超过 25%,则对象直接晋升到老生代中。设置为25%的比例的原因是,当完成 Scavenge 回收后,To 空间将翻转成From 空间,继续进行对象内存的分配。若占比过大,将影响后续内存分配。
对象晋升到老生代后,将接受新的垃圾回收算法处理。下图为Scavenge算法中,对象晋升流程图。
Scavenge 算法的缺点是,它的算法机制决定了只能利用一半的内存空间。但是新生代中的对象生存周期短、存活对象少,进行对象复制的成本不是很高,因而非常适合这种场景。
老生代中的对象有两个特点,第一是存活对象多,第二个存活时间长。若在老生代中使用 Scavenge 算法进行垃圾回收,将会导致复制存活对象的效率不高,且还会浪费一半的空间。因而,V8在老生代采用Mark-Sweep 和 Mark-Compact 算法进行垃圾回收。
Mark-Sweep,是标记清除的意思。它主要分为标记和清除两个阶段。
与 Scavenge 算法不同,Mark-Sweep 不会对内存一分为二,因此不会浪费空间。但是,经历过一次 Mark-Sweep 之后,内存的空间将会变得不连续,这样会对后续内存分配造成问题。比如,当需要分配一个比较大的对象时,没有任何一个碎片内支持分配,这将提前触发一次垃圾回收,尽管这次垃圾回收是没有必要的。
为了解决内存碎片的问题,提高对内存的利用,引入了 Mark-Compact (标记整理)算法。Mark-Compact 是在 Mark-Sweep 算法上进行了改进,标记阶段与Mark-Sweep相同,但是对未标记的对象处理方式不同。与Mark-Sweep是对未标记的对象立即进行回收,Mark-Compact则是将存活的对象移动到一边,然后再清理端边界外的内存。
由于Mark-Compact需要移动对象,所以执行速度上,比Mark-Sweep要慢。所以,V8主要使用Mark-Sweep算法,然后在当空间内存分配不足时,采用Mark-Compact算法。
在新生代中,由于存活对象少,垃圾回收效率高,全停顿时间短,造成的影响小。但是老生代中,存活对象多,垃圾回收时间长,全停顿造成的影响大。为了减少全停顿的时间,V8对标记进行了优化,将一次停顿进行的标记过程,分成了很多小步。每执行完一小步就让应用逻辑执行一会儿,这样交替多次后完成标记。如下图所示:
长时间的GC,会导致应用暂停和无响应,将会导致糟糕的用户体验。从2011年起,v8就将「全暂停」标记换成了增量标记。改进后的标记方式,最大停顿时间减少到原来的1/6。
垃圾回收的原理较为复杂,在理解上需要花费一些功夫。了解GC原理,有助于我们对Nodejs项目进行性能瓶颈定位与调优。文章所描述的算法为V8中使用的基础算法,现代V8引擎对垃圾回收进行了很多改进,比如,在Chrome 64和Node.js v10中V8启用了「并行标记」技术,将标记时间缩短了60%~70%。还有「Parallel Scavenger」技术,它将新生代的垃圾回收时间缩短了20%~50%。
垃圾回收是影响服务性能的因素之一,为了提高服务性能,应尽量减少垃圾回收的次数。
V8堆内存最大值在64位系统上为1464MB,在32位系统上为732MB。计算公式如下:
③ 我们还能在哪些方面进行webpack性能优化
Bigo前端组计算平台前端组基于amis框架,参考之前的文章:https%3A%2F%2Fgithub.com%2Fbigo-frontend%2Fblog%2Fissues%2F17 ;有很好的研发效率提升,但是构建速度却很慢,亟需进行优化。优化之后达到了将webpack构建速度提升80%左右的一个成绩,以下是优化前后的对比
团队做了3件事情来达到这样的一个效果:
基于这次优化做了功课,看了一些资料,看看还有哪些可以优化的地方。
官网的定义:
webpack is a static mole bundler for modern javaScript applications. When webpack processes your application, it internally builds a dependency graph which maps every mole your project needs and generates one or more bundles.
也就是说 webpack 是一个用于现代 JavaScript 应用程序的静态模块打包工具,从入口出发,找到入口文件所有的依赖,生成浏览器可以用的bundle文件。webpack的出现使得前端的工程化更加地丰富。从webpack在2013的第一次release(v1.0.0-beta2)开始,至今已经有8、9年的 历史 了,是一个相当成熟的工具,其生态也比较完善,所以前端圈用webpack也是非常地广泛。
尽量用较新的版本,新版本相较之前都会有一定的性能提升和优化,包括Node和Webpack。要注意的是 Node.js v8.9.10 - v9.11.1 ES6的 Set 和 Map 会有性能回退问题,现在LTS的node已经是 v14.16.0 ,所以假设 Node 版本已经较新,并且用的是 WP4 ( webpack4 )。目前还不建议对求稳的或者已经很庞大的项目立即升级到 WP5 ,其一是因为webpack生态里面并不一定所有的插件都能跟的上最新的版本,可能会出现兼容性的问题;其二由于webpack5还并未被广泛地应用,到新版本的稳定和成熟还是需要一定的时间,为避免不必要的bug,建议暂时使用 webpack4 。
对于开发者来说,每次在build的时候不希望花费较长的时间,优化构建速度能够减少开发成本;对于用户而言,优化bundle文件的数量和大小能减少用户的流失率,提升用户体验。所以webpack的性能优化是一个非常关键的技术手段。
webpack构建大概可分为 loader解析 -> 依赖搜索 -> 打包 等三个阶段,就这三个阶段我们分别展开阐述如何去优化。
loader解析:
依赖搜索:
打包: Smaller = Faster
当然需要在 index.html 里面引入cdn依赖,否则在runtime无法找到相应的模块: 。
开发环境* *:** 同样地,生产环境有些配置也不适用于开发环境,比如 TerserPlugin 就不需要,因为在开发环境中压缩代码是没有意义的;devTools的最佳实践是 eval-cheap-mole-source-map ,我现在的项目比较轻量,但是也能看出对比:
虽然是不到1000ms的差距,苍蝇肉也是肉不是?而且将来代码量越来越庞大的时候,差距就更明显了。
当然还有其他的可以优化的方法,比如使用ES mole,能更好地利用webpack的tree shaking功能;Dll,为更改不频繁的代码生成单独的编译结果,但却是一个配置比较复杂的过程;还有对图片的压缩等等。以上是对于webpack4性能优化基本的配置,期待webpack5成熟稳定的那一天。
④ nodejs的优势和劣势是什么
nodejs优势在于原型开发快,学习门槛低,简单业务运行效率高于java等后台脚本语言的vm。
劣势同样明显,javascript引擎基于事件的函数回调模型既是优势又是劣势:导致复杂逻辑失控,不能用于生产环境。此架构并非新兴事物,早年的windows 3的消息模型类似:所谓的协同式多任务(不展开)。最终不得不让步于抢占多任务。导致入门易,优化难,难调试,大型业务框架不易成型
⑤ Web前端性能优化的实用技巧汇总
今天小编要跟大家分享的文章是关于Web前端性能优化的实用技巧汇总。javascript在浏览器中运行的性能,可以认为是开发者所面临的最严重的可用性问题。这个问题因为javascript的阻塞性而变得复杂,事实上,多数浏览器使用单一进程来处理用户界面和js脚本执行,所以同一时刻只能做一件事。js执行过程耗时越久,浏览器等待响应的时间越长。
一.提高加载性能
1.IE8,FF,3.5,Safari4和Chrome都允许并行下载js文件,当script下载资源时不会阻塞其他script的下载。但是js下载仍然会阻塞其他资源的下载,如图片。尽管脚本下载不会互相影响,但页面仍然必须等待所有js代码下载并执行完才能继续。因此仍然存在脚本阻塞问题.推荐将所有js文件放在body标签底部以减少对整个页面的影响。
2.减少页面外链脚本文件的数量将会提高页面性能:
http请求会带来额外的开销,因此下载单个300k的文件将比下载10个30k的文件效率更高。
3.动态脚本加载技术:
无论何时启动下载,文件的下载和执行都不会阻塞页面其他进程。
functionlaodScript(url,callback){
varscript=document.createElement('script');_
_cript.type='text/javascript'__f(script.readyState){//ie
____cript.onreadystatechange=function(){_____
if(script.readyState=='loaded'||script.readyState=='complete'){_______
_cript.onreadystatechange=null;_______
callback()_____
____
__
}else{//其他浏览器___
script.onload=function(){_____
_allback()
___}_
}_
script.src=url;_
document.getElementsByTagName('head')[0].appendChild(script);
}
//使用
loadScript('./a.js',function(){_
loadScript('./b.js',function(){___
loadScript('./c.js',function(){_____
console.log('加载完成')___
})_
})
})
4.无阻塞加载类库——LABjs,使用方法如下:
//链式调用时文件逐个下载,.wait()用来指定文件下载并执行完毕后所调用的函数
$LAB.script('./a.js')_
.script('./b.js')_
.wait(function(){__
_pp.init();
})
//为了保证执行顺序,可以这么做,此时a必定在b前执行
$LAB.script('./a.js').wait()_
.script('./b.js')_
.wait(function(){___
_pp.init();
})
二.数据存取与JS性能
1.在js中,数据存储的位置会对代码整体性能产生重大影响。数据存储共有4种方式:字面量,变量,数组项,对象成员。他们有着各自的性能特点。
2.访问字面量和局部变量的速度最快,相反,访问数组和对象相对较慢
3.由于局部变量存在于作用域链的起始位置,因此访问局部变量的比访问跨域作用变量更快
4.嵌套的对象成员会明显影响性能,应尽量避免
5.属性和方法在原型链位置越深,访问他的速度越慢
6.通常我们可以把需要多次使用的对象成员,数组元素,跨域变量保存在局部变量中来改善js性能
三.DOM编程
1.访问DOM会影响浏览器性能,修改DOM则更耗费性能,因为他会导致浏览器重新计算页面的几何变化。<通常的做法是减少访问DOM的次数,把运算尽量留在JS这一端。
注:如过在一个对性能要求比较高的操作中更新一段HTML,推荐使用innerHTML,因为它在绝大多数浏览器中运行的都很快。但对于大多数日常操作而言,并没有太大区别,所以你更应该根据可读性,稳定性,团队习惯,代码风格来综合决定使用innerHTML还是createElement()
2.HTML集合优化
HTML集合包含了DOM节点引用的类数组对象,一直与文档保持连接,每次你需要最新的信息时,都会重复执行查询操作,哪怕只是获取集合里元素的个数。
①_优化一——集合转数组collToArr
functioncollToArr(coll){_
for(vari=0,a=[],len=coll.length;i
a._ush(coll[i]);
__
returna
}
②缓存集合length
③访问集合元素时使用局部变量(即将重复的集合访问缓存到局部变量中,用局部变量来操作)
3.遍历DOM
①使用只返回元素节点的API遍历DOM,因为这些API的执行效率比自己实现的效率更高:
td{border:1pxsolid#ccc;padding:5px;margin:auto;}
td>p{text-align:left;}
td>pspan{text-align:center;display:block;}
属性名
被替代属性
children
childNodes
childElementCount
childNodes.length
firstElementChild
firstChild
lastElementChild
lastChild
nextElementSibling
nextSibling
previousElementSibling
previousSibling
_谘≡衿_PI——querySelectorAll()
querySelectorAll()方法使用css选择器作为参数并返回一个NodeList——包含着匹配节点的类数组对象,该方法不会返回HTML集合,因此返回的节点不会对应实时文档结构,着也避免了HTML集合引起的性能问题。
let_rr=_ocument.querySelectorAll('div.warning,_iv.notice>_')
4.重绘和重排
浏览器在下载完页面的所有组件——html,js,css,图片等之后,会解析并生成两个内部数据结构——_OM树,渲染树.一旦DOM树和渲染树构建完成,浏览器就开始绘制页面元素(paint).
①重排发生的条件:
添加或删除可见的DOM元素位置变化元素尺寸改变内容改变页面渲染器初始化浏览器窗口尺寸变化出现滚动条时会触发整个页面的重排_嘏疟囟ㄖ鼗
5.渲染树变化的排列和刷新
大多数浏览器通过队列化修改并批量执行来优化重排过程,然而获取布局信息的操作会导致队列强制刷新。
offsetTop,offsetWidth...
scrollTop,scrollHeight...
clientTop,clientHeight...
getComputedStyle()
一些优化建议:将设置样式的操作和获取样式的操作分开:
//设置样式
body.style.color='red'
body.style.fontSize=པpx'
//读取样式
letcolor=body.style.color
let_ontSize=_ody.style.fontSize
另外,获取计算属性的兼容写法:
functiongetComputedStyle(el){_
varcomputed=(document.body.currentStyle?el.currentStyle:document.defaultView.getComputedStyle(el,'');_
returncomputed
}
6.最小化重绘和重排
①.批量改变样式
/*使用cssText
*/el.style.cssText='border-left:1px;_order-right:2px;_adding:20px'
②.批量修改dom的优化方案——使元素脱离文档流-对其应用多重改变-把元素带回文档
functionappendDataToEl(option){
vartargetEl=option.target||document.body,___
createEl,___
data=option.data||[];_//让容器脱离文档流,减少重绘重排_
vartargetEl_display=targetEl.style.display;_
targetEl.style.display='none'
_
//*****创建文档片段来优化Dom操作****_
varfragment=document.createDocumentFragment();_//给元素填充数据_
for(vari=0,max=data.length;i
createEl=
document.createElement(option.createEl);___
for(varitemindata[i]){_____
if(item.toString()==='text'){_______
createEl.appendChild(document.createTextNode(data[i][item]));________ontinue;___________
_f(item.toString()==='html'){_______
createEl.innerHTML=item,data[i][item];_______
continue;_____
}_____
_reateEl.setAttribute(item,data[i][item]);_______
//****将填充好的node插入文档片段****___
fragment.appendChild(createEl);___
//****将文档片段统一插入目标容器****_
targetEl.appendChild(fragment);_
//显示容器,完成数据填充_
targetEl.style.display=
targetEl_display;
}
//使用
varwrap=document.querySelectorAll('.wrap')[0];
vardata=[_
_name:'xujaing',text:'选景',title:'xuanfij'},_
{name:'xujaing',text:'选景',title:'xuanfij'},_
{name:'xujaing',text:'选景',title:'xuanfij'}];
appendDataToEl({_
target:wrap,_
createEl:'div',
_ata:data
});
上面的优化方法使用了文档片段:_蔽颐前盐牡灯尾迦氲浇诘阒惺保导噬媳惶砑拥闹皇歉闷蔚淖咏诘悖皇瞧伪旧怼?梢允沟_om操作更有效率。
②.缓存布局信息
//缓存布局信息
letcurrent=el.offsetLeft;
current++;
el.style.left=current+'px'
if(current>300){_
stop();
}
④.慎用:hover
如果有大量元素使用:hover,那么会降低相应速度,CPU升高
⑤.使用事件委托(通过事件冒泡实现)来减少事件处理器的数量,减少内存和处理时间
functiondelegation(e,selector,callback){_
e=e||window.event;_
vartarget=e.target||e.srcElement;
_if(target.nodeName!==selector||
target.className!==selector||target.id!==selector){___
return;
_}_
if(typeofe.preventDefault==='function'){__
_.preventDefault();___
e.stopPropagation();
}else{___
e.returnValue=false;
e.cancelBubble=true;_
}
__allback()}
四.算法和流程控制
1.循环中减少属性查找并反转(可以提升50%-60%的性能)
//for循环
for(vari=item.length;i--){_
process(item[i]);
}
//while循环
varj=item.length;
while(j--){_
process(item[i]);
}
2.使用Duff装置来优化循环(该方法在后面的文章中会详细介绍)
3.基于函数的迭代(比基于循环的迭代慢)
items.forEach(function(value,index,array){__rocess(value);})
4.通常情况下switch总比if-else快,但是不是最佳方案
五.字符串和正则表达式
1.除了IE外,其他浏览器会尝试为表达式左侧的字符串分配更多的内存,然后简单的将第二个字符串拷贝到他的末尾,如果在一个循环中,基础字符串位于最左侧,就可以避免重复拷贝一个逐渐变大的基础字符串。2.使用[sS]来匹配任意字符串3.去除尾部空白的常用做法:
if(!String.prototype.trim){_
String.prototype.trim=function(){___
returnthis.replace(/^s+/,'').replace(/ss*$/,'')_
}
}
六.快速响应的用户界面
1.浏览器的UI线程:用于执行javascript和更新用户界面的进程。
2.在windows系统中定时器分辨率为15毫秒,因此设置小于15毫秒将会使IE锁定,延时的最小值建议为25ms.
3.用延时数组分割耗时任务:
functionmultistep(steps,args,callback){_
vartasks=steps.concat();
__etTimeout(function(){___
vartask=tasks.shift();___
task.apply(null,args||[]);_//调用Apply参数必须是数组
___
if(tasks.length>0){_____
setTimeout(arguments.callee,25);
___else{_____
_allback();___
__
},25);
}
4.记录代码运行时间批处理任务:
functiontimeProcessArray(items,process,callback){_
vartodo=item.concat();__etTimeout(function(){___
varstart=+newDate();
__o{_____
_rocess(todo.shift());___
}while(todo.length>0&&(+newDate()-start<50));
____f(todo.length>0){_____
_etTimeout(arguments.callee,25);
___else{____
_allback(items);_
}_
_,25)
}
5.使用WebWorker:它引入了一个接口,能使代码运行且不占用浏览器UI线程的时间。一个Worker由如下部分组成:
①一个navigator对象,包括app