❶ java注解如何自动触发
没有自动触发一说, 总有那么一段程序都 把这些注解信息给提出来,然后跑它的功能。 只是说有些框架提供了这些功能,你不用自己去写了,只需要 配置就好了。 不同的框架是不一样的不能给我讲
❷ spring常用注解作用与常用接口与后置处理器
从spring2.5之后,spring注解驱动开发慢慢取代了Spring的xml配置文件的作用,而且目前流行的SpringBoot开发也是基于spring注解驱动做扩展的,所以想要理解好SpringBoot,就必须掌握一些spring的注解驱动。
以前xml的做法是
现在使用spring注解的做法是
java8之后ComponentScan注册加了@Repeatable(ComponentScans.class),可以直接在配置类上标注多个@Componentscan,在java8之前想配置多个@Componentscan扫描,需要用@ComponentScans
给容器注册组件(bean)的几种方式
1.包扫描+组件标注注解(@Service、@Controller、@Repository、@Componet),这种方式用于导入自己写的类
2.@Bean方式导入,常用入导入第三方包里面的类 默认bean id为导入执行的方法名
3.@Import方式导入(有三种用法),默认的bean id为全类名
4.通过FactoryBean(工厂bean)
-bean创建->初始化->销毁
applicationContextAeare和EmbeddedValueResolverAeare都是通过后置处理器来实现的
BeanFactoryPostProcessor是在bean定义信息加载完成后调用
是在bean定义信息将要加载时调用
先执行的实现类再执行BeanFactoryPostProcessor的实现类
创建bean的源码位置
org.springframework.context.support.AbstractApplicationContext#
->org.springframework.beans.factory.BeanFactory#getBean(java.lang.String, java.lang.Class<T>)
-->org.springframework.beans.factory.support.AbstractBeanFactory#createBean
--->org.springframework.beans.factory.support.#doCreateBean
执行bean对象的实例化
->org.springframework.beans.factory.support.AbstractBeanFactory#createBean
给bean的属性赋值
org.springframework.beans.factory.support.#populateBean
initializeBean方法主要做了三个操作1.循环执行后置处理器的的前置方法()、2.再执行初始化方法(invokeInitMethods),3.再执行后置处理器的的后置方法()
org.springframework.beans.factory.support.#initializeBean(java.lang.String, java.lang.Object, org.springframework.beans.factory.support.RootBeanDefinition)
❸ java注解是怎么实现的
java 注解大致分为2类
运行时注解
编译期注解
运行时注解,主要通过反射获取注解信息,在执行你想执行的代码
编译期注解,在编译的时候,就已经处理过,运行的时候不会在处理,编译期注解实现需要实现系统的注解处理器。就是说在java代码编译的时候,生成一个新的类。
❹ 如何调试编译时注解处理器AnnotationProcessor
ALU内含电路系统,易于输出端完成简单的普通运算和逻辑运算(比如加法和位元运算)。如果加法运算产生一个对该CPU处理而言过大的结果,在标志暂存器里可能会设置运算溢出(Arithmetic Overflow)标志。
❺ Java8的特性有哪些
1、函数式接口
Java 8 引入的一个核心概念是函数式接口(Functional Interfaces)。通过在接口里面添加一个抽象方法,这些方法可以直接从接口中运行。如果一个接口定义个唯一一个抽象方法,那么这个接口就成为函数式接口。同时,引入了一个新的注解:@FunctionalInterface。可以把他它放在一个接口前,表示这个接口是一个函数式接口。这个注解是非必须的,只要接口只包含一个方法的接口,虚拟机会自动判断,不过最好在接口上使用注解 @FunctionalInterface 进行声明。在接口中添加了 @FunctionalInterface 的接口,只允许有一个抽象方法,否则编译器也会报错。
java.lang.Runnable 就是一个函数式接口。
@FunctionalInterface
public interface Runnable {
public abstract void run();
}
2、Lambda 表达式
函数式接口的重要属性是:我们能够使用 Lambda 实例化它们,Lambda 表达式让你能够将函数作为方法参数,或者将代码作为数据对待。Lambda 表达式的引入给开发者带来了不少优点:在 Java 8 之前,匿名内部类,监听器和事件处理器的使用都显得很冗长,代码可读性很差,Lambda 表达式的应用则使代码变得更加紧凑,可读性增强;Lambda 表达式使并行操作大集合变得很方便,可以充分发挥多核 CPU 的优势,更易于为多核处理器编写代码;
Lambda 表达式由三个部分组成:第一部分为一个括号内用逗号分隔的形式参数,参数是函数式接口里面方法的参数;第二部分为一个箭头符号:->;第三部分为方法体,可以是表达式和代码块。语法如下:
1. 方法体为表达式,该表达式的值作为返回值返回。
(parameters) -> expression
2. 方法体为代码块,必须用 {} 来包裹起来,且需要一个 return 返回值,但若函数式接口里面方法返回值是 void,则无需返回值。
(parameters) -> { statements; }
例如,下面是使用匿名内部类和 Lambda 表达式的代码比较。
下面是用匿名内部类的代码:
button.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {
System.out.print("Helllo Lambda in actionPerformed");
}
});
下面是使用 Lambda 表达式后:
button.addActionListener(
\\actionPerformed 有一个参数 e 传入,所以用 (ActionEvent e)
(ActionEvent e)->
System.out.print("Helllo Lambda in actionPerformed")
);
上面是方法体包含了参数传入 (ActionEvent e),如果没有参数则只需 ( ),例如 Thread 中的 run 方法就没有参数传入,当它使用 Lambda 表达式后:
Thread t = new Thread(
\\run 没有参数传入,所以用 (), 后面用 {} 包起方法体
() -> {
System.out.println("Hello from a thread in run");
}
);
通过上面两个代码的比较可以发现使用 Lambda 表达式可以简化代码,并提高代码的可读性。
为了进一步简化 Lambda 表达式,可以使用方法引用。例如,下面三种分别是使用内部类,使用 Lambda 表示式和使用方法引用方式的比较:
//1. 使用内部类
Function<Integer, String> f = new Function<Integer,String>(){
@Override
public String apply(Integer t) {
return null;
}
};
//2. 使用 Lambda 表达式
Function<Integer, String> f2 = (t)->String.valueOf(t);
//3. 使用方法引用的方式
Function<Integer, String> f1 = String::valueOf;
要使用 Lambda 表达式,需要定义一个函数式接口,这样往往会让程序充斥着过量的仅为 Lambda 表达式服务的函数式接口。为了减少这样过量的函数式接口,Java 8 在 java.util.function 中增加了不少新的函数式通用接口。例如:
Function<T, R>:将 T 作为输入,返回 R 作为输出,他还包含了和其他函数组合的默认方法。
Predicate<T> :将 T 作为输入,返回一个布尔值作为输出,该接口包含多种默认方法来将 Predicate 组合成其他复杂的逻辑(与、或、非)。
Consumer<T> :将 T 作为输入,不返回任何内容,表示在单个参数上的操作。
例如,People 类中有一个方法 getMaleList 需要获取男性的列表,这里需要定义一个函数式接口 PersonInterface:
interface PersonInterface {
public boolean test(Person person);
}
public class People {
private List<Person> persons= new ArrayList<Person>();
public List<Person> getMaleList(PersonInterface filter) {
List<Person> res = new ArrayList<Person>();
persons.forEach(
(Person person) ->
{
if (filter.test(person)) {//调用 PersonInterface 的方法
res.add(person);
}
}
);
return res;
}
}
为了去除 PersonInterface 这个函数式接口,可以用通用函数式接口 Predicate 替代如下:
class People{
private List<Person> persons= new ArrayList<Person>();
public List<Person> getMaleList(Predicate<Person> predicate) {
List<Person> res = new ArrayList<Person>();
persons.forEach(
person -> {
if (predicate.test(person)) {//调用 Predicate 的抽象方法 test
res.add(person);
}
});
return res;
}
}
3、接口的增强
Java 8 对接口做了进一步的增强。在接口中可以添加使用 default 关键字修饰的非抽象方法。还可以在接口中定义静态方法。如今,接口看上去与抽象类的功能越来越类似了。
默认方法
Java 8 还允许我们给接口添加一个非抽象的方法实现,只需要使用 default 关键字即可,这个特征又叫做扩展方法。在实现该接口时,该默认扩展方法在子类上可以直接使用,它的使用方式类似于抽象类中非抽象成员方法。但扩展方法不能够重载 Object 中的方法。例如:toString、equals、 hashCode 不能在接口中被重载。
例如,下面接口中定义了一个默认方法 count(),该方法可以在子类中直接使用。
public interface DefaultFunInterface {
//定义默认方法 countdefault int count(){
return 1;
}
}
public class SubDefaultFunClass implements DefaultFunInterface {
public static void main(String[] args){
//实例化一个子类对象,改子类对象可以直接调用父接口中的默认方法 count
SubDefaultFunClass sub = new SubDefaultFunClass();
sub.count();
}
}
静态方法
在接口中,还允许定义静态的方法。接口中的静态方法可以直接用接口来调用。
例如,下面接口中定义了一个静态方法 find,该方法可以直接用 StaticFunInterface .find() 来调用。
public interface StaticFunInterface {public static int find(){
return 1;
}
}
public class TestStaticFun {
public static void main(String[] args){
//接口中定义了静态方法 find 直接被调用
StaticFunInterface.fine();
}
}
❻ java 注解处理器(AbstractProcessor) 获取到 指定注解的属性值 javapoet 如何使用这个值生成类
定义:注解(Annotation),也叫元数据。一种代码级别的说明。它是JDK1.5及以后版本引入的一个特性,与类、接口、枚举是在同一个层次。它可以声明在包、类、字段、方法、局部变量、方法参数等的前面,用来对这些元素进行说明,注释。
❼ java8u66是什么,开发性能好吗
是java的开发集成环境。
引用:Java SE 8u65/66 发布,Java SE 8u65包括所有重要的安全补丁(CPU),官方强烈建议所有Java SE 8用户升级到这个版本; Java SE 8u66 是一个补丁集更新(PSU),包括所有8u65的更新以及其他普通补丁。
改变之处:
开发效率
生产效率方面JDK8主要从以下2个目标提升:
-集合(collections)- 通过对集合扩展,让使用时更加简洁
-注解(annotations)- 加强注解支持,允许在上下文中写注解,现在是不能这样用的(如:primitives)
性能
把Fork/Join框架加到JDK7中,是我们转向多核编程的第一步。JDK8通过提供闭包(lambda表达式)支持的方式将这条路线走的更远了。可能影响较大的就是集合部分吧,闭包再加上新的接口和功能将推使java容器到一个新的层次。除了更加增加可读性和代码的简洁性,lambda表达式还使集合操作能充分利用多核处理器特性。
模块化
社区中最让人感兴趣的一块是 jigsaw 项目:这个项目的目的是为JAVA SE平台设计和实现一个标准模块化的系统,然后把这个系统应用到平台本身和JDK。这里我用了过去式的说法是为了那些我们希望摆脱类路径(环境变量)和类载入器,我们不得不把期待留到JAVA9,至于那个时间点,也会因为 jigsaw 项目而被推迟。
❽ Java8有哪些新特性
jdk1.8的新特性包括如下:
一、接口的默认方法与静态方法,也就内是接口中可以有实现方法
二、Lambda 表达式容
三、函数式接口与静态导入
四、Lambda 作用域
在lambda表达式中访问外层作用域和老版本的匿名对象中的方式很相似。你可以直接访问标记了final的外层局部变量,或者实例的字段以及静态变量。
五、访问局部变量,等等其他新特性。
❾ Java8这10个特性你知道多少
下面给你列举Java8的10个特性:
1、default方法
这是Java语言的一个新特性,现在接口类里可以包含方法体(这就是default方法)了。这些方法会隐式的添加到实现这个接口的每个子类中。
2、终止进程
一旦启动外部进程的话,当这个进程崩溃,挂起,或者CPU到达100%的时候,你就得回来擦屁股了。Process类现在增加了两个新的方法,可以来教训下那些不听话的进程了。第一个是isAlive()方法,有了它你可以判断进程是否还活着。第二个方法则更加强大,它叫destroyForcibly(),你可以用它来强制的杀掉一个已经超时或者不再需要的进程。
3、StampedLock
Java 8引入了一个新的读写锁,叫做StampedLock。它不仅更快,同时还提供了一系列强大的API来实现乐观锁,这样如果没有写操作在访问临界区域的话,你只需很低的开销就能获取到一个读锁。访问结束后你可以查询锁来判断这期间是否发生了写操作,如果有的话再选择进行重试,升级锁,或者放弃这个操作。
4、并发计数器
这是多线程程序会用到的另一个小工具。它提供了简单高效的新接口来实现多线程的并发读写计数器的功能,和AtomicInteger比起来,它要更快一些。相当赞的工具。
5、Optional
Java 8借鉴了Scala和Haskell,提供了一个新的Optional模板,可以用它来封装可能为空的引用。这绝不是终结空指针的银弹,更多只是使API的设计者可以在代码层面声明一个方法可能会返回空值,调用方应该注意这种情况。正因为这个,这只对新的API有效,前提是调用方不要让引用逃逸出封装类,否则的话引用可能会在外面被不安全的废弃掉。
6、万物皆可注解
还有一个小的改进就是现在Java注解可以支持任意类型了。之前只有像类和方法声明之类的才能使用注解。在Java 8里面,当类型转化甚至分配新对象的时候,都可以在声明变量或者参数的时候使用注解。这是Java为了更好地支持静态分析及检测工具(比如FireBug)而做的工作中的一部分。这是个很不错的特性,但是和Java 7的invokeDynamic一样,它的真正价值取决于社区以后如何去使用它。
7、数值溢出
这些方法早就该出现在Java的核心类库里了。我有个癖好就是去测试整型超出2^32时溢出的情况,搞出一些恶心的随机BUG来(怎么会得到这么奇怪的一个值?)。
同样的,这也不是什么银弹,只不过是提供了一组函数,这样你在使用+/*操作符进行数值操作的时候,如果出现了溢出,会抛一个异常。如果我可以决定的话,我会把它作为JVM的默认模式,显式的标明函数会出现数值溢出。
8、目录遍历
遍历目录树这种事通常都得上Google搜下怎么实现(你很可能用的是Apache.FileUtils)。Java 8给Files类做了一次整容手术,增加了十个新的方法。我最喜欢的一个是walk()方法,它遍历目录后会创建出一个惰性的流(文件系统很大的情况下非常有用)。
9、增强的随机数生成
现在经常都在讨论密码或者密钥容易遭受攻击的事。程序的安全性是项很复杂的工程,并且很容易出错。这就是我为什么喜欢这个新的SecureRandom.getinstanceStrong()方法的原因,它能自动选择出当前JVM可用的最佳的随机数生成器。这样减少了获取失败的机率,同时也避免了默认的弱随机数生成器可能会导致密钥或者加密值容易被黑客攻破的问题。
10、Date.toInstant()
Java 8引入了一个新的日期API。这不难理解,因为现有的这个实在是太难用了。实际上Joda一直以来都是Java日期API的首选。不过尽管有了新的API,但仍有一个严重的问题——大量的旧代码和库仍然在使用老的API。并且我们还知道这种现状仍将继续存在下去。到底该怎么做呢?
Java 8很优雅的解决了这个问题,它给Date类增加了一个新的方法toInstant(),它可以将Date转化成新的实现。这样你马上就可以切换到新的API,尽管现有的代码还在使用老的日期API(并且在可预见的未来仍将继续这样)。
❿ java注解的类型可以是哪些
使用注解
在一般的Java开发中,最常接触到的可能就是@Override和@SupressWarnings这两个注解了。使用@Override的时候只需要一个简单的声明即可。这种称为标记注解(marker annotation ),它的出现就代表了某种配置语义。而其它的注解是可以有自己的配置参数的。配置参数以名值对的方式出现。使用 @SupressWarnings的时候需要类似@SupressWarnings({"uncheck", "unused"})这样的语法。在括号里面的是该注解可供配置的值。由于这个注解只有一个配置参数,该参数的名称默认为value,并且可以省略。而花括号则表示是数组类型。在JPA中的@Table注解使用类似@Table(name = "Customer", schema = "APP")这样的语法。从这里可以看到名值对的用法。在使用注解时候的配置参数的值必须是编译时刻的常量。
从某种角度来说,可以把注解看成是一个XML元素,该元素可以有不同的预定义的属性。而属性的值是可以在声明该元素的时候自行指定的。在代码中使用注解,就相当于把一部分元数据从XML文件移到了代码本身之中,在一个地方管理和维护。
开发注解
在一般的开发中,只需要通过阅读相关的API文档来了解每个注解的配置参数的含义,并在代码中正确使用即可。在有些情况下,可能会需要开发自己的注解。这在库的开发中比较常见。注解的定义有点类似接口。下面的代码给出了一个简单的描述代码分工安排的注解。通过该注解可以在源代码中记录每个类或接口的分工和进度情况。
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.TYPE)
public@interfaceAssignment{
Stringassignee();
inteffort();
doublefinished()default0;
}
@interface用来声明一个注解,其中的每一个方法实际上是声明了一个配置参数。方法的名称就是参数的名称,返回值类型就是参数的类型。可以通过default来声明参数的默认值。在这里可以看到@Retention和@Target这样的元注解,用来声明注解本身的行为。@Retention用来声明注解的保留策略,有CLASS、RUNTIME和SOURCE这三种,分别表示注解保存在类文件、JVM运行时刻和源代码中。只有当声明为RUNTIME的时候,才能够在运行时刻通过反射API来获取到注解的信息。@Target用来声明注解可以被添加在哪些类型的元素上,如类型、方法和域等。
处理注解
在程序中添加的注解,可以在编译时刻或是运行时刻来进行处理。在编译时刻处理的时候,是分成多趟来进行的。如果在某趟处理中产生了新的Java源文件,那么就需要另外一趟处理来处理新生成的源文件。如此往复,直到没有新文件被生成为止。在完成处理之后,再对Java代码进行编译。JDK 5中提供了apt工具用来对注解进行处理。apt是一个命令行工具,与之配套的还有一套用来描述程序语义结构的Mirror API。Mirror API(com.sun.mirror.*)描述的是程序在编译时刻的静态结构。通过Mirror API可以获取到被注解的Java类型元素的信息,从而提供相应的处理逻辑。具体的处理工作交给apt工具来完成。编写注解处理器的核心是AnnotationProcessorFactory和AnnotationProcessor两个接口。后者表示的是注解处理器,而前者则是为某些注解类型创建注解处理器的工厂。
以上面的注解Assignment为例,当每个开发人员都在源代码中更新进度的话,就可以通过一个注解处理器来生成一个项目整体进度的报告。 首先是注解处理器工厂的实现。
{
(Set<AnnotationTypeDeclaration>atds,?){
if(atds.isEmpty()){
returnAnnotationProcessors.NO_OP;
}
returnnewAssignmentAp(env);//返回注解处理器
}
publicCollection<String>supportedAnnotationTypes(){
returnCollections.unmodifiableList(Arrays.asList("annotation.Assignment"));
}
publicCollection<String>supportedOptions(){
returnCollections.emptySet();
}
}
AnnotationProcessorFactory接口有三个方法:getProcessorFor是根据注解的类型来返回特定的注解处理器;supportedAnnotationTypes是返回该工厂生成的注解处理器所能支持的注解类型;supportedOptions用来表示所支持的附加选项。在运行apt命令行工具的时候,可以通过-A来传递额外的参数给注解处理器,如-Averbose=true。当工厂通过 supportedOptions方法声明了所能识别的附加选项之后,注解处理器就可以在运行时刻通过的getOptions方法获取到选项的实际值。注解处理器本身的基本实现如下所示。
{
private;
;
publicAssignmentAp(){
this.env=env;
assignmentDeclaration=(AnnotationTypeDeclaration)env.getTypeDeclaration("annotation.Assignment");
}
publicvoidprocess(){
Collection<Declaration>declarations=env.getDeclarationsAnnotatedWith(assignmentDeclaration);
for(Declarationdeclaration:declarations){
processAssignmentAnnotations(declaration);
}
}
(Declarationdeclaration){
Collection<AnnotationMirror>annotations=declaration.getAnnotationMirrors();
for(AnnotationMirrormirror:annotations){
if(mirror.getAnnotationType().getDeclaration().equals(assignmentDeclaration)){
Map<,AnnotationValue>values=mirror.getElementValues();
Stringassignee=(String)getAnnotationValue(values,"assignee");//获取注解的值
}
}
}
}
注解处理器的处理逻辑都在process方法中完成。通过一个声明(Declaration)的getAnnotationMirrors方法就可以获取到该声明上所添加的注解的实际值。得到这些值之后,处理起来就不难了。
在创建好注解处理器之后,就可以通过apt命令行工具来对源代码中的注解进行处理。 命令的运行格式是apt -classpath bin -factory annotation.apt.AssignmentApf src/annotation/work/*.java,即通过-factory来指定注解处理器工厂类的名称。实际上,apt工具在完成处理之后,会自动调用javac来编译处理完成后的源代码。
JDK 5中的apt工具的不足之处在于它是Oracle提供的私有实现。在JDK 6中,通过JSR 269把自定义注解处理器这一功能进行了规范化,有了新的javax.annotation.processing这个新的API。对Mirror API也进行了更新,形成了新的javax.lang.model包。注解处理器的使用也进行了简化,不需要再单独运行apt这样的命令行工具,Java编译器本身就可以完成对注解的处理。对于同样的功能,如果用JSR 269的做法,只需要一个类就可以了。
@SupportedSourceVersion(SourceVersion.RELEASE_6)
@SupportedAnnotationTypes("annotation.Assignment")
{
;
publicsynchronizedvoidinit(){
super.init(processingEnv);
ElementselementUtils=processingEnv.getElementUtils();
assignmentElement=elementUtils.getTypeElement("annotation.Assignment");
}
publicbooleanprocess(Set<?extendsTypeElement>annotations,RoundEnvironmentroundEnv){
Set<?extendsElement>elements=roundEnv.getElementsAnnotatedWith(assignmentElement);
for(Elementelement:elements){
processAssignment(element);
}
}
privatevoidprocessAssignment(Elementelement){
List<?extendsAnnotationMirror>annotations=element.getAnnotationMirrors();
for(AnnotationMirrormirror:annotations){
if(mirror.getAnnotationType().asElement().equals(assignmentElement)){
Map<?extendsExecutableElement,?extendsAnnotationValue>values=mirror.getElementValues();
Stringassignee=(String)getAnnotationValue(values,"assignee");//获取注解的值
}
}
}
}
仔细比较上面两段代码,可以发现它们的基本结构是类似的。不同之处在于JDK 6中通过元注解@SupportedAnnotationTypes来声明所支持的注解类型。另外描述程序静态结构的javax.lang.model包使用了不同的类型名称。使用的时候也更加简单,只需要通过javac -processor annotation.pap.AssignmentProcess Demo1.java这样的方式即可。
上面介绍的这两种做法都是在编译时刻进行处理的。而有些时候则需要在运行时刻来完成对注解的处理。这个时候就需要用到Java的反射API。反射API提供了在运行时刻读取注解信息的支持。不过前提是注解的保留策略声明的是运行时。Java反射API的AnnotatedElement接口提供了获取类、方法和域上的注解的实用方法。比如获取到一个Class类对象之后,通过getAnnotation方法就可以获取到该类上添加的指定注解类型的注解。
实例分析
下面通过一个具体的实例来分析说明在实践中如何来使用和处理注解。假定有一个公司的雇员信息系统,从访问控制的角度出发,对雇员的工资的更新只能由具有特定角色的用户才能完成。考虑到访问控制需求的普遍性,可以定义一个注解来让开发人员方便的在代码中声明访问控制权限。
@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
public@interfaceRequiredRoles{
String[]value();
}
下一步则是如何对注解进行处理,这里使用的Java的反射API并结合动态代理。下面是动态代理中的InvocationHandler接口的实现。
<T>implementsInvocationHandler{
finalTaccessObj;
publicAccessInvocationHandler(TaccessObj){
this.accessObj=accessObj;
}
publicObjectinvoke(Objectproxy,Methodmethod,Object[]args)throwsThrowable{
RequiredRolesannotation=method.getAnnotation(RequiredRoles.class);//通过反射API获取注解
if(annotation!=null){
String[]roles=annotation.value();
Stringrole=AccessControl.getCurrentRole();
if(!Arrays.asList(roles).contains(role)){
(".");
}
}
returnmethod.invoke(accessObj,args);
}
}
在具体使用的时候,首先要通过Proxy.newProxyInstance方法创建一个EmployeeGateway的接口的代理类,使用该代理类来完成实际的操作。