导航:首页 > 编程语言 > java调用caffe

java调用caffe

发布时间:2023-01-15 19:04:47

① 深度学习caffe的代码怎么读

我认为这个问题我是这样看的,希望可以帮到你。


首先

Caffe框架主要有五个组件,Blob,Solver,Net,Layer,Proto,其结构图如下图1所示。Solver负责深度网络的训练,每个Solver中包含一个训练网络对象和一个测试网络对象。每个网络则由若干个Layer构成。每个Layer的输入和输出Feature map表示为Input Blob和Output Blob。

最后因为我自己也不是专业的程序员所以如果有不对的地方欢迎更正。

② 如何调用caffe已经训练好的net

cifar10数据库

60000张32*32 彩色图片 共10类

50000张训练

10000张测试

下载cifar10数据库

这是binary格式的,所以我们要把它转换成leveldb格式。

2 在../caffe-windows/examples/cifar10文件夹中有一个 convert_cifar_data.cpp

将他include到MainCaller.cpp中。如下:编译....我是一次就通过了 ,在bin文件夹里出现convert_cifar_data.exe。然后 就可以进行格式转换。binary→leveldb

可以在bin文件夹下新建一个input文件夹。将cifar10.binary文件放在input文件夹中,这样转换时就不用写路径了。

③ 如何调用caffe已经训练好的net

你想调用你的模型,最简单的办法是看examples/cpp_classification里面的cpp文件,那是教你如何调用caffe获取分类结果的...(你没接触过caffe的话,建议你直接按照这个文件来操作可能会比较简单,下面我的代码我也不知道没接触过caffe的人看起来难度会有多大)

不过那个代码我看着不太习惯,所以之前自己稍微写了一个简易的版本,不知道怎么上传附件,懒人一个就直接把代码贴在最后了。
先简单解释一下如何使用,把这个代码复制到一个头文件中,然后放在examples里面一个自己创建的文件夹里面,然后写一个main函数调用这个类就可以了,比如:
复制,保存到caffe/examples/myproject/net_operator.hpp,然后同目录下写一个main.cpp,在main函数里面#include "net_operator.hpp",就可以使用这个类了:
const string net_prototxt = "..."; // 你的网络的prototxt文件,用绝对路径,下面同理
const string pre_trained_file = "..."; // 你训练好的.caffemodel文件
const string img_path = "..."; // 你要测试的图片路径
// 创建NetOperator对象
NetOperator net_operator(net_prototxt, pre_trained_file);
Blob<float> *blob = net_operator.processImage(img_path);
// blob就得到了最后一层的输出结果,至于blob里面是怎么存放数据的,你需要去看看官网对它的定义

写完main.cpp之后,到caffe目录下,make,然后它会编译你写的文件,对应生成的可执行文件。比如按我上面写的那样,make之后就会在caffe/build/examples/myproject文件夹里面生成一个main.bin,执行这个文件就可以了。因为生成的可执行文件并不是直接在代码目录下,所以前面我建议你写的路径用绝对路径

另外如果你要获取的不是最后一层的输出,你需要修改一下processImage函数的返回值,通过NetOperator的成员变量net_来获取你需要的blob,比如有个blob名称为"label",你想获取这个blob,可以通过net_->blob_by_name("label")来获取,当然获取到的是shared_ptr<Blob<float> >类型的,搜一下boost shared_ptr就知道跟普通指针有什么不同了

好了,接下来是贴代码了:
#include <caffe/caffe.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>

using namespace caffe; // NOLINT(build/namespaces)
using std::string;

class NetOperator
{
public:
NetOperator(const string& net_prototxt);
NetOperator(const string& net_prototxt, const string& trained_file);
~NetOperator() { }

int batch_size() { return batch_size_; }

Blob<float>* processImage(const string &img_path, bool is_color = true);
Blob<float>* processImages(const vector<string> &img_paths, bool is_color = true);

private:
void createNet(const string& net_prototxt);
// read the image and store it in the idx position of images in the blob
void readImageToBlob(const string &img_path, int idx = 0, bool is_color = true);

shared_ptr<Net<float> > net_;
cv::Size input_geometry_;
int batch_size_;
int num_channels_;
Blob<float>* input_blob_;

TransformationParameter transform_param_;
shared_ptr<DataTransformer<float> > data_transformer_;
Blob<float> transformed_data_;
};

NetOperator::NetOperator(const string& net_prototxt) {
createNet(net_prototxt);
}

NetOperator::NetOperator(const string& net_prototxt, const string& trained_file) {
createNet(net_prototxt);

net_->CopyTrainedLayersFrom(trained_file);
}

void NetOperator::createNet(const string& net_prototxt) {
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif

net_.reset(new Net<float>(net_prototxt, TEST));

CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";

Blob<float>* input_layer = net_->input_blobs()[0];
batch_size_ = input_layer->num();
num_channels_ = input_layer->channels();
CHECK(num_channels_ == 3 || num_channels_ == 1)
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
// reshape the output shape of the DataTransformer
vector<int> top_shape(4);
top_shape[0] = 1;
top_shape[1] = num_channels_;
top_shape[2] = input_geometry_.height;
top_shape[3] = input_geometry_.width;
this->transformed_data_.Reshape(top_shape);
}

Blob<float>* NetOperator::processImage(const string &img_path, bool is_color) {
// reshape the net for the input
input_blob_ = net_->input_blobs()[0];
input_blob_->Reshape(1, num_channels_,
input_geometry_.height, input_geometry_.width);
net_->Reshape();

readImageToBlob(img_path, 0, is_color);

net_->ForwardPrefilled();

return net_->output_blobs()[0];
}

Blob<float>* NetOperator::processImages(const vector<string> &img_paths, bool is_color) {
int img_num = img_paths.size();
// reshape the net for the input
input_blob_ = net_->input_blobs()[0];
input_blob_->Reshape(img_num, num_channels_,
input_geometry_.height, input_geometry_.width);
net_->Reshape();

for (int i=0; i<img_num; i++) {
readImageToBlob(img_paths[i], i, is_color);
}

net_->ForwardPrefilled();

return net_->output_blobs()[0];
}

void NetOperator::readImageToBlob(const string &img_path, int idx, bool is_color) {
// read the image and resize to the target size
cv::Mat img;
int cv_read_flag = (is_color ? CV_LOAD_IMAGE_COLOR :
CV_LOAD_IMAGE_GRAYSCALE);
cv::Mat cv_img_origin = cv::imread(img_path, cv_read_flag);
if (!cv_img_origin.data) {
LOG(ERROR) << "Could not open or find file " << img_path;
return ;
}
if (input_geometry_.height > 0 && input_geometry_.width > 0) {
cv::resize(cv_img_origin, img, input_geometry_);
} else {
img = cv_img_origin;
}

// transform the image to a blob using DataTransformer
// create a DataTransformer using default TransformationParameter (no transformation)
data_transformer_.reset(
new DataTransformer<float>(transform_param_, TEST));
data_transformer_->InitRand();
// set the output of DataTransformer to the idx image of the input blob
int offset = input_blob_->offset(idx);
this->transformed_data_.set_cpu_data(input_blob_->mutable_cpu_data() + offset);
// transform the input image
data_transformer_->Transform(img, &(this->transformed_data_));
}

④ 如何调用caffe已经训练好的net

1 cifar10数据库 60000张32*32 彩色图片 共10类 50000张训练 10000张测试 下载cifar10数据库 这是binary格式的,所以我们要把它转换成leveldb格式。 2 在../caffe-windows/examples/cifar10文件夹中有一个 convert_cifar_data.cpp 将他include到...

⑤ 如何调用caffe已经训练好的net

文件夹里面,然后写一个main函数调用这个类就可以了,比如:复制,保存到caffe/examples/myproject/net_operator.hpp,然后同目录下写一个main.cpp,在main函数里面#include "net_operator.hpp",就可以使用这个类了:const string net_prototxt = "..."; // 你的网络的prototxt文件,用绝对路径,下面同理const string pre_trained_file = "..."; // 你训练好的.caffemodel文件const string img_path = "..."; // 你要测试的图片路径// 创建NetOperator对象NetOperator net_operator(net_prototxt, pre_trained_file);Blob<float> *blob = net_operator.processImage(img_path);// blob就得到了最后一层的输出结果,至于blob里面是怎么存放数据的,你需要去看看官网对它的定义写完main.cpp之后,到caffe目录下,make,然后它会编译你写的文件,对应生成的可执行文件。比如按我上面写的那样,make之后就会在caffe/build/examples/myproject文件夹里面生成一个main.bin,执行这个文件就可以了。因为生成的可执行文件并不是直接在代码目录下,所以前面我建议你写的路径用绝对路径另外如果你要获取的不是最后一层的输出,你需要修改一下processImage函数的返回值,通过NetOperator的成员变量net_来获取你需要的blob,比如有个blob名称为"label",你想获取这个blob,可以通过net_->blob_by_name("label")来获取,当然获取到的是shared_ptr<Blob<float> >类型的,搜一下boost shared_ptr就知道跟普通指针有什么不同了好了,接下来是贴代码了:#include <caffe/caffe.hpp>#include <opencv2/core/core.hpp>#include <opencv2/highgui www.hbbz08.com /highgui.hpp>#include <opencv2/imgproc/imgproc.hpp>#include <iosfwd>#include <memory>#include <string>#include <utility>#include <vector>using namespace caffe; // NOLINT(build/namespaces)using std::string;class NetOperator{public: NetOperator(const string& net_prototxt); NetOperator(const string& net_prototxt, const string& trained_file); ~NetOperator() { } int batch_size() { return batch_size_; } Blob<float>* processImage(const string &img_path, bool is_color = true); Blob<float>* processImages(const vector<string> &img_paths, bool is_color = true);private: void createNet(const string& net_prototxt); // read the image and store it in the idx position of images in the blob void readImageToBlob(const string &img_path, int idx = 0, bool is_color = true); shared_ptr<Net<float> > net_; cv::Size input_geometry_; int batch_size_; int num_channels_; Blob<float>* input_blob_; TransformationParameter transform_param_; shared_ptr<DataTransformer<float> > data_transformer_; Blob<float> transformed_data_;};NetOperator::NetOperator(const string& net_prototxt) { createNet(net_prototxt);}NetOperator::NetOperator(const string& net_prototxt, const string& trained_file) { createNet(net_prototxt); net_->CopyTrainedLayersFrom(trained_file);}void NetOperator::createNet(const string& net_prototxt) {#ifdef CPU_ONLY Caffe::set_mode(Caffe::CPU);#else Caffe::set_mode(Caff www.hnne.com e::GPU);#endif net_.reset(new Net<float>(net_prototxt, TEST)); CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input."; CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output."; Blob<float>* input_layer = net_->input_blobs()[0]; batch_size_ = input_layer->num(); num_channels_ = input_layer->channels(); CHECK(num_channels_ == 3 || num_channels_ == 1) << "Input layer should have 1 or 3 channels."; input_geometry_ = cv::Size(input_layer->width(), input_layer->height()); // reshape the output shape of the DataTransformer vector<int> top_shape(4); top_shape[0] = 1; top_shape[1] = num_channels_; top_shape[2] = input_geometry_.height; top_shape[3] = input_geometry_.width; this->transformed_data_.Reshape(top_shape);}Blob<float>* NetOperator::processImage(const string &img_path, bool is_color) { // reshape the net for the input input_blob_ = net_->input_blobs()[0]; input_blob_->Reshape(1, num_channels_, input_geometry_.height, input_geometry_.width); net_->Reshape(); readImageToBlob(img_path, 0, is_color); net_->ForwardPrefilled(); return net_->output_blobs()[0];}Blob<float>* NetOperator::processImages(const vector<string> &img_paths, bool is_color) { int img_num = img_paths.size(); // reshape the net for the input input_blob_ = net_->input_blobs()[0]; input_blob_->Reshape(img_num, num_channels_, input_geometry_.height, input_geometry_.width); net_->Reshape(); for (int i=0; i<img_num; i++) { readImageToBlob(img_paths[i], i, is_color); } net_->ForwardPrefilled(); return net_->output_blobs()[0];}void NetOperator::readImageToBlob(const string &img_path, int idx, bool is_color) { // read the image and resize to the target size cv::Mat img; int cv_read_flag = (is_color ? CV_LOAD_IMAGE_COLOR : CV_LOAD_IMAGE_GRAYSCALE); cv::Mat cv_img_origin = cv::imread(img_path, cv_read_flag); if (!cv_img_origin.data) { LOG(ERROR) << "Could not open or find file " << img_path; return ; } if (input_geometry_.height > 0 && input_geometry_.width > 0) { cv::resize(cv_img_origin, img, input_geometry_); } else { img = cv_img_origin; } // transform the image to a blob using DataTransformer // create a DataTransformer using default TransformationParameter (no transformation) data_transformer_.reset( new DataTransformer<float>(transform_param_, TEST)); data_transformer_->InitRand(); // set the output of DataTransformer to the idx image of the input blob int offset = input_blob_->offset(idx); this->transformed_data_.set_cpu_data(input_blob_->mutable_cpu_data() + offset); // transform the input image data_transformer_->Transform(img, &(this->transformed_data_));

java 可以调用caffe模型吗

具有速度快,模型定义方便等优点。学习了几天过后,发现也有一个不方便的地方,就是在我的程序中调用Caffe做图像分类没有直接的接口。

⑦ 求助waifu2x-caffe无法运行

一般java虚拟机默认安装在系统盘(C:/)根目录下,但环境变量中的路径却需要设置。右键电击“我的电脑”属性,在高级选项中有个环境变量,将下边的系统变量中的path路径后面追加“C;/jre1.5.0_05/bin;”就可以了。 至于编译运行,可在“运行”中输入cmd,进入你代码所在文件夹,javac命令编译,java命令运行。

阅读全文

与java调用caffe相关的资料

热点内容
dos看图工具 浏览:15
微信直接加为好友 浏览:467
可以用微信传送的文件app 浏览:294
pdf文件解析乱码 浏览:479
光照无关图代码 浏览:688
Linux读写文件前八位 浏览:597
word如何绘制饼状图 浏览:172
w7系统搜索文件夹 浏览:618
java线程变量 浏览:854
苹果电脑word是只读文件 浏览:691
ps5国行备份文件大小 浏览:754
linux恢复删除文件命令 浏览:805
win10家庭版打不开qq文件 浏览:794
女生来例假有哪个app比较好 浏览:66
调用后台接口为什么不显示数据 浏览:363
js判断重复 浏览:422
联通如何切换到网络电视 浏览:191
学编程的优势哪里靠谱 浏览:939
沟通文件 浏览:267
水准测量平差程序 浏览:78

友情链接