导航:首页 > 网络信息 > 卷积神经网络怎么训练

卷积神经网络怎么训练

发布时间:2025-03-17 15:22:15

『壹』 深度神经网络是如何训练的

我就以卷积神经网络为例来说吧。卷积神经网络的训练过程就是对大量带标签数据(监督学习)通过反向传播算法学习网络结构中的参数。其基本思想是:基于一组设置的初始化模型参数,比如利用高斯分布来随机初始化网络结构中的参数,输入数据在卷积神经网络中经过前向传播会得到一个期望输出,如果这个期望输出与数据的实际类别标签不相同,则将误差逐层反向传播至输入层,每层的神经元会根据该误差对网络结构中的参数进行更新。对卷积神经网络而言,待学习的参数包括卷积核参数、层间的连接参数以及各层的偏置。训练好的模型能够计算新输入数据对应的类别标签,从而完成分类或预测任务。

阅读全文

与卷积神经网络怎么训练相关的资料

热点内容
maya粒子表达式教程 浏览:84
抖音小视频如何挂app 浏览:283
cad怎么设置替补文件 浏览:790
win10启动文件是空的 浏览:397
jk网站有哪些 浏览:134
学编程和3d哪个更好 浏览:932
win10移动硬盘文件无法打开 浏览:385
文件名是乱码还删不掉 浏览:643
苹果键盘怎么打开任务管理器 浏览:437
手机桌面文件名字大全 浏览:334
tplink默认无线密码是多少 浏览:33
ipaddgm文件 浏览:99
lua语言编程用哪个平台 浏览:272
政采云如何导出pdf投标文件 浏览:529
php获取postjson数据 浏览:551
javatimetask 浏览:16
编程的话要什么证件 浏览:94
钱脉通微信多开 浏览:878
中学生学编程哪个培训机构好 浏览:852
荣耀路由TV设置文件共享错误 浏览:525

友情链接