一般用matlab或者scilab来编程,因为输入输出是图像的话,用矩阵计算会更方便。
B. 人工智能选择python还是java语言
最近几年伴随着大数据的发展,人工智能也迎来了前所未有的发展契机,大量的专业人才涌向了人工智能领域,相信未来人工智能领域会进一步赢得市场的追捧。
不少打算学计算机的学生,想从事人工智能行业,但是对于人工智能选择python还是java语言比较纠结,不知道选择哪个编程语言好。
先看两者在人工智能方向的应用
python主要上升领域是人工智能与数据挖掘。
Java适用于NLP和搜索算法,还适用于神经网络。
目前的Python处于刚兴起的时候,需求虽然没有java那么大,但是一直在稳步增长,因为从事的人少,其起薪也是相当的高。这里你可能问,有工作经验的程序猿那么多,为什么不转Python,这样既有工作经验,又会Python。
python和java语言的发展方向
1、Python:数据分析,人工智能,web开发,测试,运维,web安全。
2、Java:移动应用、科学应用、大数据开发、安卓开发、服务器开发、 桌面开发、游戏开发。
Java作为全球占比最高的开发语言,有着她独一无二的优势,在这个行业经验与创造力很重要。
Java也是一种多范式语言,遵循面向对象的原则和一次写入读取/随处运行(WORA)的原则。它是一种AI编程语言,可以在任何支持它的平台上运行,而无需重新编译。
基于目前国内python人才需求呈大规模上升,薪资水平也水涨船高。学python的人大多非科班出身。很多大学并没有开设此专业,因此就出现了大量的人才缺口。
社会是发展变化的,没有人知道那个语言最有前景,你的重点事如何“精通”一门语言,更正确一点说,你要如何在编程这个技能上成为专家,练就“九阳神功”,然后,根据自己的职业需求、观察市场随时凭自己练就的内功、强大的学习能力应对随时的变化和需求。
总结:
可见,对于人工智能来说使用python和java编程语言都是可以的,各有优缺点,不过考虑开发效率和难度,可以先选择python学习更合适一点,等精通以后再学习java,达到灵活使用。
推荐:[MYSQL课程]
C. 请问高手,神经网络模型与学习算法用什么语言编程比较好JAVA 、C语言还是C++等。谢谢!
神经网络模型?不会是你的课题吧,大型算法应用(有界面),当然用C++(效率高)来写,JAVA次之(略简单)。
学习算法的精髓就用C,C++和JAVA作为高级语言打包了很多基础型的算法。
D. 人工智能用的编程语言是哪些
在推动AI产业从兴起进入快速发展的历程中,AI顶级人才的领军作用尤为重要。上至国家,下至科技巨头,无不将AI视为提升自身的核心竞争力的根本性战略。那么你有没有想过这么一个问题:人工智能开发语言哪个更好?
其实,并不是每种编程语言,都能为开发人员节省时间及精力。在此整理了5种比较适用于人工智能开发的编程语言:
Python
Python由于简单易用,是人工智能领域中使用较广泛的编程语言之一,它可以无缝地与数据结构和其他常用的AI算法一起使用。Python之所以时候AI项目,其实也是基于Python的很多有用的库都可以在AI中使用,如Numpy提供科学的计算能力,Scypy的高级计算和Pybrain的机器学习。另外,Python有大量的在线资源,所以学习曲线也不会特别陡峭。
Java
对于AI项目来说,算法几乎是灵魂,无论是搜索算法、自然语言处理算法还是神经网络,Java都可以提供一种简单的编码算法。另外,Java的扩展性也是AI项目必备的功能之一。
Lisp
Lisp因其出色的原型设计能力和对符号表达式的支持在AI领域崭露头角。LISP作为因应人工智能而设计的语言,因其可用性和符号结构而主要用于机器学习/ ILP子领域。著名的AI专家彼得·诺维奇(Peter Norvig)在其《Artificial Intelligence: A modern approach》一书中,详细解释了为什么Lisp是AI开发的顶级编程语言之一。
Prolog
Prolog一种逻辑编程语言,主要是对一些基本机制进行编程,对于AI编程十分有效,例如它提供模式匹配,自动回溯和基于树的数据结构化机制。结合这些机制可以为AI项目提供一个灵活的框架。Prolog广泛应用于AI的 expert系统,也可用于医疗项目的工作。
C ++
在AI项目中,C++可用于统计,如神经网络。另外算法也可以在C ++被广泛地快速执行,游戏中的AI主要用C ++编码,以便更快地执行和响应时间。这也是一门非常不错的语言。
E. 人工智能用的编程语言是哪些
Python、Java、Lisp、Prolog、C ++、Yigo。
F. 各种编程语言的深度学习库整理大全!
各种编程语言的深度学习库整理大全!
Python1. Theano是一个python类库,用数组向量来定义和计算数学表达式。它使得在Python环境下编写深度学习算法变得简单。在它基础之上还搭建了许多类库。
1.Keras是一个简洁、高度模块化的神经网络库,它的设计参考了Torch,用Python语言编写,支持调用GPU和CPU优化后的Theano运算。
2.Pylearn2是一个集成大量深度学习常见模型和训练算法的库,如随机梯度下降等。它的功能库都是基于Theano之上。
3.Lasagne是一个搭建和训练神经网络的轻量级封装库,基于Theano。它遵循简洁化、透明化、模块化、实用化和专一化的原则。
4.Blocks也是一个基于Theano的帮助搭建神经网络的框架。
2. Caffe是深度学习的框架,它注重于代码的表达形式、运算速度以及模块化程度。它是由伯克利视觉和学习中心(Berkeley Vision and Learning Center, BVLC)以及社区成员共同开发。谷歌的DeepDream项目就是基于Caffe框架完成。这个框架是使用BSD许可证的C++库,并提供了Python调用接口。
3. nolearn囊括了大量的现有神经网络函数库的封装和抽象接口、大名鼎鼎的Lasagne以及一些机器学习的常用模块。
4. Genism也是一个用Python编写的深度学习小工具,采用高效的算法来处理大规模文本数据。
5. Chainer在深度学习的理论算法和实际应用之间架起一座桥梁。它的特点是强大、灵活、直观,被认为是深度学习的灵活框架。
6. deepnet是基于GPU的深度学习算法函数库,使用Python语言开发,实现了前馈神经网络(FNN)、受限玻尔兹曼机(RBM)、深度信念网络(DBN)、自编码器(AE)、深度玻尔兹曼机(DBM)和卷积神经网络(CNN)等算法。
7. Hebel也是深度学习和神经网络的一个Python库,它通过pyCUDA控制支持CUDA的GPU加速。它实现了最重要的几类神经网络模型,提供了多种激活函数和模型训练方法,例如momentum、Nesterov momentum、dropout、和early stopping等方法。
8. CXXNET是一个基于MShadow开发的快速、简洁的分布式深度学习框架。它是一个轻量级、易扩展的C++/CUDA神经网络工具箱,提供友好的Python/Matlab接口来进行训练和预测。
9. DeepPy是基于NumPy的深度学习框架。
10. DeepLearning是一个用C++和Python共同开发的深度学习函数库。
11. Neon是Nervana System 的深度学习框架,使用Python开发。
Matlab
1. ConvNet 卷积神经网络是一类深度学习分类算法,它可以从原始数据中自主学习有用的特征,通过调节权重值来实现。
2. DeepLearnToolBox是用于深度学习的Matlab/Octave工具箱,它包含深度信念网络(DBN)、栈式自编码器(stacked AE)、卷积神经网络(CNN)等算法。
3. cuda-convet是一套卷积神经网络(CNN)代码,也适用于前馈神经网络,使用C++/CUDA进行运算。它能对任意深度的多层神经网络建模。只要是有向无环图的网络结构都可以。训练过程采用反向传播算法(BP算法)。
4. MatConvNet是一个面向计算机视觉应用的卷积神经网络(CNN)Matlab工具箱。它简单高效,能够运行和学习最先进的机器学习算法。
CPP
1. eblearn是开源的机器学习C++封装库,由Yann LeCun主导的纽约大学机器学习实验室开发。它用基于能量的模型实现卷积神经网络,并提供可视化交互界面(GUI)、示例以及示范教程。
2. SINGA是Apache软件基金会支持的一个项目,它的设计目标是在现有系统上提供通用的分布式模型训练算法。
3. NVIDIA DIGITS是用于开发、训练和可视化深度神经网络的一套新系统。它把深度学习的强大功能用浏览器界面呈现出来,使得数据科学家和研究员可以实时地可视化神经网络行为,快速地设计出最适合数据的深度神经网络。
4. Intel? Deep Learning Framework提供了Intel?平台加速深度卷积神经网络的一个统一平台。
Java
1. N-Dimensional Arrays for Java (ND4J) 是JVM平台的科学计算函数库。它主要用于产品中,也就是说函数的设计需求是运算速度快、存储空间最省。
2. Deeplearning4j 是第一款商业级别的开源分布式深度学习类库,用Java和Scala编写。它的设计目的是为了在商业环境下使用,而不是作为一款研究工具。
3. Encog是一个机器学习的高级框架,涵盖支持向量机、人工神经网络、遗传编程、贝叶斯网络、隐马可夫模型等,也支持遗传算法。
JavaScript
1. Convnet.js 由JavaScript编写,是一个完全在浏览器内完成训练深度学习模型(主要是神经网络)的封装库。不需要其它软件,不需要编译器,不需要安装包,不需要GPU,甚至不费吹灰之力。
Lua
1. Torch是一款广泛适用于各种机器学习算法的科学计算框架。它使用容易,用快速的脚本语言LuaJit开发,底层是C/CUDA实现。Torch基于Lua编程语言。
Julia
1. Mocha是Julia的深度学习框架,受C++框架Caffe的启发。Mocha中通用随机梯度求解程序和通用模块的高效实现,可以用来训练深度/浅层(卷积)神经网络,可以通过(栈式)自编码器配合非监督式预训练(可选)完成。它的优势特性包括模块化结构、提供上层接口,可能还有速度、兼容性等更多特性。
Lisp
1. Lush(Lisp Universal Shell)是一种面向对象的编程语言,面向对大规模数值和图形应用感兴趣的广大研究员、实验员和工程师们。它拥有机器学习的函数库,其中包含丰富的深度学习库。
Haskell
1. DNNGraph是Haskell用于深度神经网络模型生成的领域特定语言(DSL)。
.NET
1. Accord.NET 是完全用C#编写的.NET机器学习框架,包括音频和图像处理的类库。它是产品级的完整框架,用于计算机视觉、计算机音频、信号处理和统计应用领域。
R
1. darch包可以用来生成多层神经网络(深度结构)。训练的方法包括了对比散度的预训练和众所周知的训练算法(如反向传播法或共轭梯度法)的细调。
2. deepnet实现了许多深度学习框架和神经网络算法,包括反向传播(BP)、受限玻尔兹曼机(RBM)、深度信念网络(DBP)、深度自编码器(Deep autoencoder)等等。
G. 人工智能用的编程语言是哪些
楼下的回答是错的
你所说的人工智能目前主要是机器学习实现的
目前做机器学习和数据挖掘的主要语言是python
但主要原因并不是python效率高或者python和人工智能有什么不可分割的联系,而是因为python是一门很好的胶水语言,可以方便的调用别人(用各种语言)写的库,而且表达清晰灵活
所以实际上机器学习的核心知识和python并没有本质关系,python只是因为表达能力强,所以被广泛用于机器学习开发而已。