A. 想了解一下医用级别3D打印机,有人知道吗
我知道,我们公司买了一台formlabs的桌面级专业3D打印机,没有很大的噪音而且体积还小易于清洁,而且还高效工作,粉末刷新率高,真的很不错。
B. 3D打印原理是什么
3D打印原理是什么
3D打印即快速成型技术的一种,又称增材制造,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。下面我为大家带来3D打印原理是什么,希望大家喜欢!
1. 技术原理
3D打印技术与激光成型技术基本上是一样的。简单来说,就是通过采用分层加工、迭加成形,逐层增加材料来生成3D实体。称它为“打印机”的原因是参照了其技术原理,3D打印机的分层加工过程与喷墨打印机十分相似。首先是运用计算机设计出所需零件的三维模型,然后再根据工艺需求,按照一定规律将该模型离散为一系列有序的单位,通常在Z向将其按照一定的厚度进行离散,把原来的三维CAD模型变成一系列的层片;然后再根据每个层片的轮廓信息,输入加工参数,然后系统后自动生成数控代码;最后由成型一系列层片并自动将它们连接起来,最后得到一个三维物理实体。
2. 优点
一、最直接的好处就是节省材料,不用剔除边角料,提高材料利用率,通过摒弃生产线而降低了成本;
二、能做到很高的精度和复杂程度,除了可以表现出外形曲线上的设计;
三、不再需要传统的刀具、夹具和机床或任何模具,就能直接从计算机图形数据中生成任何形状的零件;
四、它可以自动、快速、直接和精确地将计算机中的设计转化为模型,甚至直接制造零件或模具,从而有效的缩短产品研发周期;
五、3D打印能在数小时内成形.它让设计人员和开发人员实现了从平面图到实体的飞跃;
六、它能打印出组装好的产品,因此它大大降低了组装成本。它甚至可以挑战大规模生产方式。
3. 缺点
任何一个产品都应该具有功能性,而如今由于受材料等因素限制,通过3D打印制造出来的产品在实用性上要打一个问号。
①强度问题:房子、车子固然能“打印”出来,但是否能抵挡得住风雨,是否能在路上顺利跑起来,仍是一个必须面对的问题;
②精度问题:由于分层制造存在“台阶效应”,每个层次虽然很薄,但在一定微观尺度下,仍会形成具有一定厚度的一级级“台阶”,如果需要制造的对象表面是圆弧形,那么就会造成精度上的偏差;
③材料的局限性:目前供3D打印机使用的材料非常有限,无外乎石膏、无机粉料、光敏树脂、塑料等,能够应用于3D打印的材料还非常单一,以塑料为主,并且打印机对单一材料也非常挑剔。
4.3D打印技术在高分子材料中的应用
1. 高分子原材料的种类
作为3D打印的重要环节,材料方面也是起到举足轻重的作用的,目前常用的3D打印高分子材料有聚酰胺、聚酯、聚碳酸酯、聚乙烯、聚丙烯和ABS等。在光固化立体印刷中的齐聚物的种类繁多,其中应用较多的主要包括如聚氨酯丙烯酸树脂、环氧丙烯酸树脂、聚丙烯酸树脂以及氨基丙烯酸树脂。
2. 常见应用工艺
目前应用较多的3D打印高分子材料技术主要包括光固化立体印刷(SLA)、熔融沉积成型( FDM)、选择性激光烧结(SLS)等。
5.光固化立体印刷
光固化3D打印(SLA)工作原理与喷墨打印类似,在数字信号的控制下,喷嘴工作腔内的液体光敏树脂在瞬间形成液滴,在压力作用下喷嘴喷出到指定的位置,然后通过紫外光对光敏树脂固化,固化后逐层堆积,得到成形零件。成形过程如下:首先根据零件截面的形状,控制打印喷头沿X、Y轴运动,在既定截面的相关实体区域打印实体材料,在支撑区域打印支撑材料,并在紫外光的照射下进行固化,然后打印平台沿Z轴下降一定高度,喷头接着打印固化下一层,如此逐层打印固化直至工件的完成,最后除去工件中的支撑材料即可获得所需的工件。
光固化3D打印材料由光固化实体材料与支撑材料组成,其中支撑材料根据其固化方式不同又可分为相变蜡支撑材料和光固化支撑材料。光固化支撑材料通常俗称光敏树脂,主要由齐聚物、反应性稀释剂(活性单体)、光引发剂以及其它助剂组成。国外由于起步较早,并且3D打印机能够为光敏树脂的研究提供实验器材的支持,因而国外在3D打印光敏树脂做的较为成熟。目前国外做的最好的就是以色列OBJET公司以及美国的3DSystems公司,这两个公司占据了绝大部分3D打印光敏树脂的市场。但是这些公司把光敏树脂作为核心技术,成果很少对外公布,并且将这些光敏树脂与其生产的光固化3D打印机捆绑销售。
6. 光固化3D打印原理图
光固化立体印刷制备生物可降解支架材料的高分子原料包括光敏分子修饰的聚富马酸二羟丙酯(PPF)聚(D,L-丙交酯)(PLA)聚( -己内酯)(PCL)、聚碳酸酯、以及蛋白质多糖等天然高分子. 为了降低液态树脂原料的黏度,还需要加入小分子的溶剂或稀释剂,常用的如可参与光聚合反应的富马酸二乙酯(DEF)和N-乙烯基吡咯烷酮(NVP),以及不参与聚合反应的乳酸乙酯,该技术获得的3D成型材料具有可调控的孔尺寸孔隙率贯通性和孔分布。
7.熔融沉积成型
熔融沉积成型( FDM) 是采用热熔喷头,使得熔融状态的材料按计算机控制的路径挤出沉积,并凝固成型,经过逐层沉积凝固,最后除去支撑材料,得到所需的`三维产品(图2 )。FDM技所使用的原料通常为热缩性高分子,包括ABS、聚酰胺、聚酯、聚碳酸酯、聚乙烯、聚丙烯等.该技特点是成型产品精度高表面质量好成型机结构简单无环境污染等,但是其缺点是操作温度较高。
近年来,利用FDM技术制备生物医用高分子材料也受到越来越多的重视,尤其是以脂肪族聚酯为原料制备生物可降解支架材料,取得了相当多的进展。材料的性质受到压力梯度熔体流速温度梯度等影响,聚酯与无机粒子的复合物也能用于熔融沉积成型制备3D支架材料。
8.选择性激光烧结
选择性激光烧结(SLS)是采用激光束按照计算机指定路径扫描,使工作台上的粉末原料熔融粘结固化。当一层扫描完毕,移动工作台,使固化层表面铺上新的粉末原料,经过逐层扫描粘结,获得三维材料。与SLA技术通过紫外光逐层引发液态树脂原料发生聚合或交联反应不同,SLS技是通过激光产生高温使粉末原料表面熔融相互粘结来形成三维材料。SLS技术常用的原料包塑料陶瓷金属粉末等。其优点是加工速度快,无需使用支撑材料,但缺点是成型产品表面较糙,需后处理,加工过程中会产生粉尘和有毒气体,而且持续高温可能造成高分子材料的降解,及生物活性分子的变形或细胞的凋亡,该技术不能用于制备水凝胶支架。以生物可降解高分子为原料,利用SLS技术,也是制备外部形态和内部结构可控3D医用高分子材料的有效途径。对支架性能产生影响的主要参数包括颗粒尺寸激光能量激光扫描速率部分床层温度等。
9.3D打印技术高分子材料的应用行业介绍
(1)机械制造:3D打印技术制造飞机零件、自行车、步枪、赛车零件等。
(2)医疗行业:在医学领域,借助3D打印制作假牙,股骨头、膝盖等骨关节技术应用也非常广,技术越来越成熟。
(3)建筑行业:工程师和设计师们已经接受了用3D打印机打印的建筑模型,这种方法快速、成本低、环保,同时制作精美,完全合乎设计者的要求。同时又能节省大量材料。
(4)汽车制造行业:用3D打印技术为汽车公司制造自动变速箱的壳体。汽车公司会对变速箱进行各种极端状况下的测试,其中一些零件就是用3D打印方法做的。定型了以后,再开模具,然后按照传统制造方法批量生产.这样成本就会大大降低。
3D打印技术代表制造业发展新趋势,它和其他一些数字化生产模式的涌现将推动实现第三次工业革命。可以充分应用高分子材料的成型技术中,制备复杂的一体化高分子材料器件,高分子医用行业将成为3D打印技术带来发展机遇,同时高分子材料将为3D打印技术提供轻质、高强、耐腐蚀的特点。
10.限制因素
10.1.材料的限制
3D打印胚胎干细胞虽然高端工业印刷可以实现塑料、某些金属或者陶瓷打印, 但无法实现打印的材料都是比较昂贵和稀缺的。另外,打印机也还没有达到成熟的水平,无法支持日常生活中所接触到的各种各样的材料。
研究者们在多材料打印上已经取得了一定的进展,但除非这些进展达到成熟并有效,否则材料依然会是3D打印的一大障碍。
10.2.机器的限制
3D打印技术在重建物体的几何形状和机能上已经获得了一定的水平,几乎任何静态的形状都可以被打印出来,但是那些运动的物体和它们的清晰度就难以实现了。这个困难对于制造商来说也许是可以解决的,但是3D打印技术想要进入普通家庭,每个人都能随意打印想要的东西,那么机器的限制就必须得到解决才行。
10.3.知识产权的忧虑
在过去的几十年里,音乐、电影和电视产业中对知识产权的关注变得越来越多。3D打印技术也会涉及到这一问题,因为现实中的很多东西都会得到更 加广泛的传播。人们可以随意复制任何东西,并且数量不限。如何制定3D打印的法律法规用来保护知识产权,也是我们面临的问题之一,否则就会出现泛滥的现象。
10.4.道德的挑战
3D打印枪械[14]道德是底线。什么样的东西会违反道德规律是很难界定的,如果有人打印出生物器官和活体组织,在不久的将来会遇到极大的道德挑战。
10.5.花费的承担
3D打印技术需要承担的花费是高昂的。第一台3D打印机的售价为1万5。如果想要普及到大众,降价是必须的,但又会与成本形成冲突。
每一种新技术诞生初期都会面临着这些类似的障碍,但相信找到合理的解决方案3D打印技术的发展将会更加迅速,就如同任何渲染软件一样,不断地更新才能达到最终的完善。
;C. 光固化3D打印机有哪些优缺点
现在3d打印机已经经变得非常普遍,其中光固化3d打印机最受欢迎。你知道光固化3d打印机优缺点吗?如果是很明白,可以往下看,纵维立方小方今天给大家仔细讲解两种讨论最多的光固化技术。
DLP3d打印
DLP使用投影仪(例如办公室演示或家庭影院的投影机)把一个物体的横截面投影到光敏性液体树脂中。其核心部分包括光半导体、数字显微设备和DLP芯片。DLP可能是目前世界上最先进的光开关设备,包含两百万个相互铰接的微型显微规则阵列。芯片配合数字视频或图像信号,光源和投影镜头,可使显微镜投射到屏幕或其它表面上。用于DLP及其外围器件的先进电子设备叫做数字光处理(数据光学处理)。
DLP芯片每秒可切换数千次,反映出1024像素的灰度阴影,将由芯片输入的图像信号转换成丰富的灰度图像。因此DLP3d打印的分辨率很高,最小打印尺寸可以达到50微米。以平面打印,但曝光面积有限。目前可打印尺寸为100*60mm至190*120mm。
DLP光固化3d打印机优缺点:高精度是它最大的优点。但是,为了保证高精度,投影尺寸有限,所以,只能打印小尺寸的物体。但是DLP技术主要是德州仪器,价格比较高。由于精度高,只能打印小型模型,所以主要用于珠宝铸造和牙科领域。
LCD3d打印
DLP和LCD3d最大的区别在于它们成像系统。对于LCD3d打印技术,LCD显示器用作成像系统。在液晶上施加电场会改变其分子排列,防止光线通过。由于采用了先进的液晶显示技术,液晶显示的分辨率非常高。但少量液晶分子在电场切换时无法重新排列,造成漏光弱。
LCD光固化3d打印机优缺点:液晶显示器价格低廉,分辨率高。然而,液晶显示屏使用寿命短,需要定期更换。液晶显示器3d打印的光强非常弱。只有10%的光能穿透液晶显示器,90%的光能被液晶显示器吸收。而且,如上所述,局部漏光会引起底光敏树脂过渡曝光,液槽需要定期清洗。LCD3d光固机已在牙科、珠宝、玩具等领域得到了广泛的应用。
D. 3D打印机可以应用于医疗吗
医疗领域,3D打印所具有的技术优势,正领域量身定做的要求,提供了有效的技术补充。
牙齿矫治
一般口腔正畸时,患者咬掉用快速定型胶制作的基础牙模,并经过专业医生不断调整牙模角度、方向及偏差。费时费力,影响矫治速度,延长了患者就医时间。
目前,利用3D打印技术对患者进行口腔扫描仪扫描并生成三维数字化模型送至纵维立方光固化3D打印机打印,可快速获得高精度牙模。3D打印可直接佩戴正畸牙套,提高就诊效率,改善口腔咬合的就医体验。相对于传统的牙科矫治器,3D打印透明矫治器不仅隐形美观,而且尺寸更适合病人在矫治过程中的每个阶段。
假肢矫形器
普通石膏模型,是根据患者肢体特征,用石膏绷带对患者肢体进行包覆和取模,使其凝固成模腔,再用石膏浆灌入模腔翻模,最后得到与患者肢体部位大小相等的残肢模型。
值得注意的是,此种残肢模型并不能直接应用,还需要专业的假肢技术人员通过复杂的技术手段来完成,最终制作出符合病人穿着需求的假肢或假肢矫形器。
3D打印技术可以节省大量的人力、物力和时间。采用3D打印快速成型的假肢矫形器更符合病人的肢体结构,提高使用者的舒适度。同时,3D打印的假肢矫形器制造成本低,大大减轻了用户的经济负担。
器官模型
肾是人体非常重要的器官,3D打印模型可以根据病人的真实成像数据,在打印过程中模仿各种组织特征。
光固化3D打印机可打印出全彩的逼真的3D打印器官模型,以帮助识别和避免因复杂或高体积肿瘤引起的周围动脉及血管损伤,从而帮助制定更精确的手术计划。
另外,光固化3D打印机制作的3D打印模型还可以用来向病人解释病情,提前规划复杂的手术流程,减少手术时间及相关的费用和风险。
该技术可直接从计算机中导入数据,生成任意形状的样品,避免了开发过程中某些复杂结构零件的人工、物力的消耗,缩短了产品定制周期,节省了人力、物力和时间,具有制造成本低、研发周期短、生产效率高等优点。
E. 目前最高有几D技术比较常见的是哪些特点及区别
这个问题……只能说这方面概念定义的很奇葩,因为事实上根本就不存在所谓4D、5D的概念。
这个几D事实上是指图像所处的空间。我们上学学过坐标系,不知道你是否思考过不同的坐标系的名称代表的含义。
初中时候开始使用的一个X轴一个Y轴的坐标系被称作平面直角坐标系,之所以称平面,是因为两个周无论怎样摆放,在这个坐标系的任何位置画出任意N个点,他们都只能是在同一个平面上。2D其实就是这个意思,我们看的2D电影,画面就是平面的,没有立体感,因为画面上的每个点都是在同一个平面上,任何一个点都可以在一个平面直角坐标系中用一个坐标来标识出来。
后来高中学了立体几何,但是没有学过三个轴的坐标系,不过理解一下就能明白,过平面直角坐标系的原点再做一条由X轴和Y轴划定出的那个平面的垂线作为Z轴,三个轴相互垂直,这样就构成了一个三维空间,这样的坐标系称作立体直角坐标系。我们生活的这个空间就是三维空间也就是3D。因为Z轴的加入,在立体直角坐标系中,不只有了平面直角坐标系中的上下左右的概念,更有了前后的概念,所以3D电影又被称作立体电影。
2D和3D的概念已经介绍完毕了,我想你也应该会思考什么是4D了,不出意外的话你一定想不出来4D是个什么概念。其实4D在我们这个空间中是不存在的,我们也无法想象出4D是个什么东西,因为空间中的任何一个位置都可以在立体直角坐标系中标识出来。那么第4个轴往哪加呢?
这只能说人类的想象力是无限的,就好像当初的MP3播放器和MP4播放器一样,一个是听声的一个是能听声也能看图的,结果后来出了一种和MP4功能类似但是支持更多格式屏幕更大的产品,就顺着叫MP5播放器了,但是你上网搜MP3格式的文件能搜到,搜MP4格式的文件也能搜到,搜MP5格式……能搜到么?显然是不能的。
所谓4D就是在3D的基础上增加了一些感官内容。比如座椅具有震动功能甚至摇摆功能,还有的剧场中有某种高端装置可以模拟一些气味,比如画面中出现了一个厕所就会发出粑粑味,出现一片花园就会有花香等等。在3D的基础上多一项功能的就号称4D,多两项功能的就号称5D以此类推。
不知道我说清楚没有。
F. 光固化3D打印运用的技术有哪些以及有哪些优缺点
3D打印有多种技术,但在这些技术中,光固化3D打印是最古老和成熟的技术。经过多年的发展,出现了很多基于光固化3D打印机的新技术,包括SLA、DLP、LCD、CLIP、MJP、双光子3D打印、全息3D打印等。今天纵维立方小方介绍其中的五种光固化3D打印技术。
1、SLA光固化3D打印。
SLA技术是最早的3D打印技术,是业界广泛使用的最成熟的3D打印技术。该技术于1986年获得专利,该技术是3D打印行业领导者3D system,Inc .的联合创始人CharlesHull。目前,大型工业光固化3D打印机主要基于SLA技术。
一般用于SLA机器的灯波长为355nm激光束,激光束在树脂罐上,曝光方向在顶部,液体树脂在扫描激光束时硬化。把平台降低到收支平衡。因此,平台的表面是树脂表面以下的厚度。然后激光束跟踪边界,填充模型的二维横截面。树脂一层固化后,平台在生成实体三维物体之前,一层一层的形成由激光束的移动控制。理论上,激光束可以在大空间内移动。因此,SLA打印技术可以打印大型模型。
优缺点:SLA是第一个快速成型技术,成熟度高,印刷工艺稳定,机器供应商多。到目前为止,SLA是唯一能够打印大型模型的光固化3D打印机技术。此外,对于阳离子光聚合的树脂也有限制。由于激光的尺寸不同,所以SLA的分辨率要低于其它光固化技术。尽管如此,SLA技术的准确性足以打印出结构复杂、尺寸细微的物体。到目前为止,SLA仍然是牙科、玩具、模具、汽车、航空航天等多个领域可用的重要打印技术。
2、DLP光固化3D打印。
DLP3D打印的核心技术是决定图像形成和打印精度的DLP技术。DLP技术的出现已经有20年了。DLP技术的核心部分是LarryHornback博士1977年发明的光学半导体或数字显微镜设备或DLP芯片,1996年被德克萨斯仪器商业化。DLP芯片可以说是当今世界上最先进的光开关设备,包括由200万个互转轴组成的微型显微镜。每台显微镜大约是人类头发大小的五分之一。因此,DLP3D打印具有较高的打印分辨率,可打印的最小尺寸为50m。
优点和缺点:精度是DLP3D打印的最大优点。但是,为了保证高精度,投影尺寸是有限的。因此,DLP3D打印只能打印小尺寸的物体。DLP3D打印技术只能打印精度高、尺寸小的模型,因此主要应用于宝石铸造和牙科领域。
3、LCD光固化3D打印
从激光扫描SLA到数字投影DLP再到最新的LCD打印技术,纵观所有光固化3D打印机技术,照明和成像系统差别很大,但控制和步进系统几乎没有差别。DLP和LCD3D打印技术最大的区别是成像系统。向液晶施加电场会改变分子排列,防止光线通过。由于先进的液晶屏显示技术,液晶屏的分辨率非常高。但是,在电场转换过程中,少量LCD分子无法重新排列,光线变弱。
优缺点:LCD机便宜,分辨率好。但是,液晶屏寿命短,需要定期更换。LCD 3D打印的亮度非常弱,只有10%的光穿透LCD,90%的光被LCD吸收。此外,如上所述,部分泄漏会导致地板的光敏树脂转换暴露,因此必须定期清理水槽。目前,LCD光固化3D打印机在牙科、珠宝、玩具等领域有应用。
4、剪辑光固化3D打印
2015年3月20日,Carbon3DCorp开发的CLIP技术登上了科学封面。该技术的核心是氧气渗透膜的发明,有助于氧气渗透的连续打印,从而抑制自由基聚合。CLIP技术是DLP的尖端技术。CLIP技术的基本原理并不复杂。底部的UV投影使光敏树脂硬化,坦克底部的液体树脂由于氧气堵塞而保持稳定的面值,从而保证硬化的连续性。下面的特殊窗户可以让光和氧气通过。这项技术最重要的优点是,可以颠覆性地生产比DLP光固化3D打印机快25 ~ 100倍的物体——,理论潜在打印速度可以达到DLP技术的1000倍,分层可以无限好。目前,3D打印需要将3D模型剪切到与幻灯片叠加类似的多个图层上,因此不会删除粗糙度。CLIP技术的图像投影可以连续变化,就像幻灯片进化成叠加视频一样。这是DLP投影技术的一大改进。
优点和缺点:CLIP技术是真正的3D打印。这是目前对3D打印技术的破坏性技术。毫无疑问,CLIP技术最大的优点是快速打印。尽管如此,仍有一些技术问题需要解决。到目前为止,通过CLIP技术,为了快速打印,需要低粘度树脂和空白模型。前两种方法可以使树脂迅速补充到印刷区,后一种可以减少每层的用量。所以,CLIP工艺对高粘树脂和实体模型的效果不佳。
5、MJP光固化3D打印
MJP技术也称为PolyJet,2000年以色列公司Objet申请了专利。MJP3D打印可以有效地打印模型,多组喷嘴协同工作。根据模型切片数据,工作时数百个喷嘴在平台上分层喷射液体光敏树脂,打印喷嘴沿XY平面移动。感光树脂喷涂到工作台上后,滚筒将喷涂树脂的表面处理平整,UVD灯将感光树脂固化。完成一层的印刷硬化后,设备内置的工作台非常准确地降低了一层的厚度,喷头继续喷出感光树脂,进行下一层的印刷硬化。重复此操作,直到打印完整个工件。
优点和缺点:对于MJP3D打印,喷嘴很多,可以喷涂多种材料。这使您可以同时打印多种材料、多色材料,以满足材料、颜色、刚度等要求。到目前为止,MJP3D打印是唯一能够打印多色模型的技术。MJP3D打印具有极高的加工精度,可打印的层厚度低到16微米。支撑材料容易熔化或溶解,所以去除支撑的过程是无损和容易的。因此,打印模型的表面是平滑的。最后,理论上印刷尺寸是无限的。但是MJP打印机机器很贵。这些材料也要贵,粘度低。MJP技术可应用于需要高加工精度的领域。现在经常用于宝石铸造、精密医学等。
G. 光固化3D打印机的工作原理是什么,平时是怎么工作的呢
与许多增材制造过程一样,SLA光固化3D打印机在一开始操作中包括通过CAD软件设计3D模型。生成的CAD文件是所需对象的数字化表示。
如果不是自动生成的,则需要将CAD文件转换为STL文件。标准镶嵌语言(STL)或“标准三角语言”是立体光刻软件的原生文件格式,是Abert Consulting Group于1987年为3D系统创建的。STL文件描述3D对象的表面形状,忽略了其他常见的CAD模型属性,例如颜色和纹理。
光固化3D打印机预打印的步骤,是把STL文件传给3D Slicer软件,比如Cura。这两个平台负责生成G代码(3D打印机本地语言)。
在开始进行光固化3D打印机的过程时,激光将印刷物“拉”进光敏树脂。不管激光打到哪里,液体都会凝固。计算机控制的反射镜将激光引导到正确的坐标。
此时,值得一提的是,大多数桌面SLA打印机都是颠倒的。也就是说,激光指向构建平台,该构建平台从低位逐渐上升。
完成这一层之后,根据该层的厚度(通常约为0.1毫米)提起平台,从而允许其他树脂在已经印刷的部件下流动。激光,然后固化下一个横截面并重复此过程,直到完成整个零件。激光未接触的树脂保留在机筒中,可以重复使用。
材料聚合后,将平台从储罐中提起,并排出多余的树脂。在该过程结束时,将模型从平台上移开,清除多余的树脂,然后将其放入UV烤箱中进行终固化。印刷后的固化可以使物体达到尽可能高的强度,更稳定。
正如前面提到的,SLA的产物是数字光处理。于SLA不同的是,DL是P使用数字投影仪屏幕在平台的每一层上闪烁单个图像。由于投影仪是数字屏幕,因此每层都是方形像素。因此,DLP打印机的分辨率与像素大小相对应,但对于SLA,它是激光光斑大小。
液态光敏树脂以产生所需的3D形状。此过程使用低功率激光,光固化激光器将光敏树脂逐层转换为固态3D固体塑料。
SLA(StereoLithorgraphy Apparatus)是光固化3D打印机中使用的一种光固化成型技术,它使用液态的光敏热固性聚合物通过紫外线激光束逐层选择性地固化光聚合物树脂来生产物体。
DLP(Digital Light Processing)ye是光固化3D打印机中使用的另一种光固化成型技术,所使用的消耗品与SLA相同。DLP设备包含一个可以容纳树脂的储液槽,该储液槽用于容纳可以通过特定波长的紫外线固化的树脂,DLP成像系统位于储液槽下方,其成像表面位于储液罐的底部。通过图形控制,每次可以固化一定厚度和形状的树脂薄层(此层中的树脂与上一次切割得到的横截面形状完全相同)。将提拉机构放置在储液槽上方,每当横截面曝光完成时,将其提拉到一定高度(该高度与层的厚度一致),将现行固化性树脂从液槽底面分离,并固定于提拉板上。采用分层曝光和拉伸的方法产生三维实体。DLP和SLA的区别之一是DLP使用投影仪的数字光源,SLA使用雷射头。
DLP和SLA均为光照成型,因此具有较高的精度。 DLP光呈扇形,是散射的,而SLA是激光,近似于一条直线,因此其精度优于DLP。
H. 3D打印机的优势到底在哪
3D打印机的优势在于成本少、可以做出传统技术做不出来的外形、打印出来的东西重量轻。
1、3D打印技术最突出的优点是无需机械加工或任何模具,就能直接从计算机图形数据中生成任何形状的零件,从而极大地缩短产品的研制周期,提高生产率和降低生产成本。与传统技术相比通过摒弃生产线而降低了成本,大幅减少了材料浪费。
2、可以制造出传统生产技术无法制造出的外形,让人们可以更有效地设计出飞机机翼或热交换器。
3、在具有良好设计概念和设计过程的情况下,三维打印技术还可以简化生产制造过程,快速有效又廉价地生产出单个物品。与机器制造出的零件相比,打印出来的产品的重量要轻60%,并且同样坚固。
(8)医用3d打印成像系统扩展阅读:
3D打印技术每一层的打印过程分为两步,首先在需要成型的区域喷洒一层特殊胶水,胶水液滴本身很小,且不易扩散。然后是喷洒一层均匀的粉末,粉末遇到胶水 会迅速固化黏结。
而没有胶水的区域仍保持松散状态。这样在一层胶水一层粉末的交替下,实体模型将会被“打印”成型,打印完毕后只要扫除松散的粉末即可刨出模型,而剩余粉末还可循环利用。