Ⅰ 大疆无人机飞控采用什么操作系统 ucos
严谨点回答应该是NUTTS系统,嵌入式操作系统一般都是linux是鼻祖,不过linux比较版庞大一般只跑在cortexA核cpu上,像当下权无人机飞控mcu多半是stm32主导的cortexM核,大疆也不例外,性价比高,只能跑实时的小操作系统,不过也是都已linux大改魔改来的,最早的市面上常见多轴开源飞控程序基本都以NUTTS系统主导,大家无非是再大改魔改成闭源固件更成熟,飞行更稳定。就像小米的MIUI其实就是改安卓,或者说优化成自家的。
Ⅱ 飞控系统的组成及功能
飞控系统一般包含了很多的传感器,速度传感器、角速率传感器、高度传感器、气压、光流等等。通过传感器 和调节PID 来为无人机进行增稳,通过连接电调来控制电机的转速来改变无人机的姿态。
Ⅲ 飞控子系统应具备的功能为
飞控子系统应具备的功能为无人机姿态稳定与控制,无人机飞行管理,应急控制。
飞控的基本子系统功能包括航向控制系统、速度控制系统、高度控制系统和自动着陆系统。
Ⅳ 无人机飞控系统主要会使用哪些控制方法
飞机的滚转和仰俯主要由副翼及升降舵控制,其主要由两种数字计算机(ELAC,SEC)提供信号给液压作动器控制舵面偏转。以升降舵为例,升降舵有两个作动器,正常情况下内侧作动器作动则外侧作动器工作在阻尼模式,此时ELAC2#计算机指令通道控制内侧作动器的伺服活门工作,ELAC1#对1#电磁活门进行监控,SEC1#监控2#电磁活门,如故障可先对系统进行地面扫描。如:SEC1 MON OR WIRING TO R Y ELEV SOL VLV 34CE2等信息,根据故障通过控制规律得出:右升降舵内侧作动器的2号电磁活门故障。通过熟记控制规律可快速准确的判断故障源,为短停排故节省时间。 方向舵是控制飞机偏航的,在电源暂时完全丧失时,提供保持飞机在飞行中的偏航能力。但是在正常状况下,一些方向舵控制功能由FAC完成。方向舵由三个伺服控制器提供动力,其控制机械信号来自踏板。故障主要集中在1个配平作动器,2个偏航阻尼作动器和1个行程限制组件上,正常情况下由飞行增稳计算机FAC1控制,FAC2处于备用状态。而飞机的方向舵故障通常不好判断,作动器位置较高更换困难,如更换件错误则会浪费大量时间造成航班延误。方向舵的几个作动器同样是由伺服活门控制,电磁活门监控,每个活门都对应了两部FAC计算机的两个插钉,只要在电子舱用万用表测量相应插钉的电阻值就可判断出哪个作动器故障,再针对更换就可快速排除此故障。
Ⅳ 飞控系统是什么意思
偶来讲讲吧
1、飞行控制系统FlightControlSystem
2、数字式飞行控制系统DFCS:DigitalFlightControlSystem
3、飞行管理计算回机系统FMCS:
这3个分别属于不答同章节:1是27章飞控的。2是22章自动飞行的。3是34章导航的。这3者在自动飞行控制方面有一定的关系。
其实飞控系统的定义就是飞机上所有用来传递操纵指令,驱动舵面运动的所有部件和装置的总合。它包括3个部分:
1、中央操纵机构,具体包括驾驶盘/侧杆和脚蹬。
2、传动机构,包括机械传动和电传。
3、驱动机构,包括液压的和电动的。
它可以实现飞机绕纵轴、横轴、立轴旋转,以完成对飞机的飞行姿态和飞行轨迹的控制。
Ⅵ 必须属于无人机飞控子系统的有哪些
必须属于无人机飞控子系统的有:
1、任务规划与控制站-俗称地面站,是无人机的指挥中心,将飞行器发回来的信息进行分析、处理,并给飞行器下达各种指令。
2、发射与回收设备--无人机不是导弹,不光能飞的出去,还要收得回来。
3、有效载荷--飞行器上所载的武器、探测设备等。
4、数据链--是无人机系统中最关键的部分。
5、地面支援设备--装载车辆、测试设备、维护设备等。
Ⅶ QQ飞控是干嘛的
QQ飞控是控制无人机的,能够感应飞行器的姿态并根据操控者的指令(如遥控器)对飞机姿态进行控制,是控制无人机的核心硬件系统,有算法程序在上面运行。
常见的飞控还有cc3d、apm、pix、F3、F4等,QQ飞控比较低廉,所以在玩具类diy上比较多,因为低廉,控制和稳定性相对其他飞控较差。
飞控
飞控是多旋翼飞行器的灵魂。那么什么是飞控呢?飞控就是飞行器的电子控制部分,全称为飞行控制器,英文Flight Controller,简写为FC。飞控主要包括主控处理器MCU和惯性导航模块(传感器部分)。
四轴飞行器相对于直升机等航模,最复杂的就是电子部分。可以和固定翼以及直升机比较一下。在常规固定翼航模上,陀螺仪并非常用器件。相对操控难度大点的直升级航模,如果不做自动稳定系统,也只是锁尾才用到陀螺仪。
四轴飞行器则必须配备陀螺仪,这是最基本要求,不然无法飞行,更谈不上飞稳了。不但要有,还得是3个维度都得有,这是四轴飞行器的机械结构、动力组成特性决定的。在此基础上再辅以3轴加速度传感器,这6个自由度,就组成了飞行姿态稳定的基本部分。
也是关键核心部分惯性导航模块,简称IMU。飞行中的姿态感测全靠这个IMU了,可见它是整架模型的核心部件。
IMU感知飞行器在空中的姿态,将数据送给主控处理器MCU。主控处理器MCU将根据用户操作的指令,以及IMU数据,通过飞行算法控制飞行器的稳定运行。由于有大量的数据需要计算,而且需要实时性极高的控制,所以MCU的性能也决定了飞行器是否能够飞得足够稳定,灵活。
Ⅷ 飞控基本知识
飞控基本知识
关于导航飞控系统是无人机的关键核心系统之一。它在部分情况下,按具体功能又可划分为导航子系统和飞控子系统两部分。那么,下面是我为大家整理的飞控基本知识,欢迎大家阅读浏览。
定义:
导航飞控系统是无人机的关键核心系统之一。它在部分情况下,按具体功能又可划分为导航子系统和飞控子系统两部分。
导航子系统的功能是向无人机提供相对于所选定的参考坐标系的位置、速度、飞行姿态、引导无人机沿指定航线安全、准时、准确地飞行。完善的无人机导航子系统具有以下功能:
(1)获得必要的导航要素,包括高度、速度、姿态、航向;
(2)给出满足精度要求的定位信息,包括经度、纬度;
(3)引导飞机按规定计划飞行;
(4)接收预定任务航线计划的装定,并对任务航线的执行进行动态管理;
(5)接收控制站的导航模式控制指令并执行,具有指令导航模式与预定航线飞行模式相互切换的功能;
(6)具有接收并融合无人机其他设备的辅助导航定位信息的能力;
(7)配合其他系统完成各种任务
飞控子系统是无人机完成起飞、空中飞行、执行任务、返厂回收等整个飞行过程的核心系统,对无人机实现全权控制与管理,因此飞控子系统之于无人机相当于驾驶员之于有人机,是无人机执行任务的关键。飞控子系统主要具有如下功能:
(1)无人机姿态稳定与控制;
(2)与导航子系统协调完成航迹控制;
(3)无人机起飞(发射)与着陆(回收)控制;
(4)无人机飞行管理;
(5)无人机任务设备管理与控制;
(6)应急控制;
(7)信息收集与传递。
以上所列的功能中第1、4和6项是所有无人机飞行控制系统所必须具备的功能,而其他项则不是每一种飞行控制系统都具备的,也不是每一种无人机都需要的,根据具体无人机的种类和型号可进行选择、裁剪和组合。
传感器
无人机导航飞控系统常用的传感器包括角速度率传感器、姿态传感器、位置传感器、迎角侧滑传感器、加速度传感器、高度传感器及空速传感器等,这些传感器构成无人机导航飞控系统设计的基础。
1.角速度传感器
角速度传感器是飞行控制系统的基本传感器之一,用于感受无人机绕机体轴的转动角速率,以构成角速度反馈,改善系统的阻尼特性、提高稳定性。
角速度传感器的选择要考虑其测量范围、精度、输出特性、带宽等。
角速度传感器应安装在无人机重心附件,安装轴线与要感受的.机体轴向平行,并特别注意极性的正确性。
2.姿态传感器
姿态传感器用于感受无人机的俯仰、转动和航向角度,用于实现姿态稳定与航向控制功能。
姿态传感器的选择要考虑其测量范围、精度、输出特性、动态特性等。
姿态传感器应安装在无人机重心附近,振动要尽可能小,有较高的安装精度要求。
3.高度、空速传感器(大气机)
高度、空速传感器(大气机)用于感受无人机的飞行高度和空速,是高度保持和空速保持的必备传感器。一般和空速管、同期管路构成大气数据系统。
高度、空速传感器(大气机)的选择主要考虑测量范围和测量精度。一般要求其安装在空速管附近,尽量缩短管路。
4.位置传感器
位置传感器用于感受无人机的位置,是飞行轨迹控制的必要前提。惯性导航设备、GPS卫星导航接收机、磁航向传感器是典型的位置传感器。
位置传感器的选择一般要考虑与飞行时间相关的导航精度、成本和可用性等问题。
惯性导航设备有安装位置和较高的安装精度要求,GPS的安装主要应避免天线的遮挡问题。
磁航向传感器要安装在受铁磁性物质影响最小且相对固定的地方,安装件应采用非磁性材料制造。
飞控计算机
导航飞控计算机,简称飞控计算机,是导航飞控系统的核心部件,从无人机飞行控制的角度来看,飞控计算机应具备如下功能:
(1)姿态稳定与控制
(2)导航与制导控制
(3)自主飞行控制
(4)自动起飞、着陆控制。
1.飞控计算机类型
飞控计算机按照对信号的处理方式,主要分为模拟式。数据混合式和数字式、飞控计算机三种类型。
现今,随着数学电路技术的发展,模拟式飞控计算机已基本被数字式飞控计算机取代,新研制的无人机飞控系统几乎都采用了数字式飞控计算机。
2.飞控计算机余度
无人机没有人身安全问题,因此会综合考虑功能、任务可靠性要求和性能价格比来进行余度配置设计。就飞控计算机而言,一般大、小型无人机都有哦余度设计,一些简单的微、轻型无人机无单余度设计。
3.飞控计算机主要硬件构成
(1)主处理控制器。主要有通用型处理器(MPU)、微处理器(MCU)、数字信号处理器(DSP)。随着FPGA技术的发展,相当多的主处理器FPGA和处理器组合成强大的主处理控制器。
(2)二次电源。二次电源是飞控计算机的一个关键部件。飞控计算机的二次电源一般为5V、±15V等直流电源电压,而无人机的一次电源根据型号不同区别较大,要对一次电源进行变换。现在普遍使用集成开关电源模块。
(3)模拟量输入/输出接口。模拟量输入接口电路将各传感器输入的模拟量进行信号调理、增益变换,模/数(A/D)转换后,提供给微处理器进行相应处理。模拟信号一般可分为直流模拟信号和交流调制信号两类。模拟量输出接口电路用于将数字控制信号转换为伺服机构能识别的模拟控制信号,包括模/数转换、幅值变换和驱动电路。
(4)离散量接口。离散量输出电路用于将飞控计算机内部及外部的开关量信号变换为与微处理器工作电平兼容的信号。
(5)通信接口。用于将接收的串行数据转换为可以让主处理器读取的数据或将主处理器要发送的数据转换为相应的数据。飞控计算机和传感器之间可以通过RS232/RS422/ARINC429等总线方式通信,随着技术的不断发展,1553B总线等其他总线通信方式也将应用到无人机系统中。
(6)余度管理。无人机余度类型飞控计算机多为双余度配置。余度支持电路用于支持多余度机载计算机协调运行,包括:通道计算机间的信息交换电路,同步指示电路,通道故障逻辑综合电路及故障切换电路。通道计算机间的信息交换电路是两个通道飞控计算机之间进行共享信息传递的信息通路。同步指示电路是同步运行的余度计算机之间相互同步的支持电路。通道故障逻辑综合电路将软件监控和硬件监控电路的监控结果进行综合,它的输出用于故障切换和故障指示。
(7)加温电路。常用工作环境超出工业品级温度范围的飞控计算机当中,以满足加温电路所需功率和加温方式的需求。
(8)检测接口。飞控计算机应留有合适的接口,方便与一线检测设备、二线检测设备连接。
(9)飞控计算机机箱。它直接影响计算机抗恶劣环境的能力以及可靠性、可维护性、使用寿命。
4.机载飞控软件
机载导航飞控软件,简称机载飞控软件,是一种运行于飞控计算机上的嵌入式实时任务软件。它不仅要具有功能正确、性能好、效率高的特点,而且要具有较好的质量保证、可靠性和可维护性。
机载非空软件按功能可以划分成如下功能模块:
(1)硬件接口驱动模块;
(2)传感器数据处理模块;
(3)飞行控制律模块;
(4)导航与制导模块;
(5)飞行任务管理模块
(6)任务设备管理模块;
(7)余度管理模块;
(8)数据传输、记录模块
(9)自检测模块
(10)其他模块。
5.飞控计算机自检测
飞控计算机自检测模块(BIT)提供故障检测、定位和隔离的功能。BIT按功能不同又分为维护自检测(MBIT)、加电起动自检测(PUBIT)、飞行前自检测(PBIT)、飞行中自检测(IFBIT)。
;Ⅸ 无人机控制系统原理
无人机控制系统原理:是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,或者由车载计算机完全地或间歇地自主地操作。
无人机系统主要包括飞机机体、飞控系统、数据链系统、发射回收系统、电源系统等。飞控系统又称为飞行管理与控制系统,相当于无人机系统的“心脏”部分,对无人机的稳定性、数据传输的可靠性、精确度、实时性等都有重要影响,对其飞行性能起决定性的作用。
Ⅹ 无人机由哪几个系统组成 求详细答案
1、无人飞行器分系统:机体、动力装置、飞行控制与管理设备等;
2、任务设备分系统:战场侦察校射设备、电子对抗设备、通信中继设备、攻击任务设备、电子技术侦察设备、核生化探测设备、战场测量设备、靶标设备等;
3、测控与信息传输分系统:无线电遥控/遥测设备、信息传输设备、中继转发设备等;
4、指挥控制分系统:飞行操纵与管理设备、综合显示设备、地图与飞行航迹显示设备、任务规划设备、记录与回放设备、情报处理与通信设备、其他情报和通信信息接口等;
5、发射与回收分系统:与发射(起飞)和回收(着陆)有关的设备或装置,如发射车、发射箱、助推器、起落架、回收伞、拦阻网等;
6、保障与维修分系统:基层级保障维修设备,基地级保障维修设备等。
(10)常见的飞控系统扩展阅读
研制背景
20世纪40年代,二战中无人靶机用于训练防空炮手。
1945年,第二次世界大战之后将多余或者是退役的飞机改装成为特殊研究或者是靶机,成为近代无人机使用趋势的先河。随着电子技术的进步,无人机在担任侦查任务的角色上开始展露他的弹性与重要性。
20世纪55年到74年的越南战争,海湾战争乃至北约空袭南斯拉夫的过程中,无人机都被频繁地用于执行军事任务。
1982年以色列航空工业公司(IAI)首创以无人机担任其他角色的军事任务。在加利利和平行动(黎巴嫩战争)时期,侦察者无人机无人机系统曾经在以色列陆军和以色列空军的服役中担任重要战斗角色。 以色列国防军主要用无人机进行侦察,情报收集,跟踪和通讯。
1991年的沙漠风暴作战当中,美军曾经发射专门设计欺骗雷达系统的小型无人机作为诱饵,这种诱饵也成为其他国家效彷的对象。
1996年3月,美国国家航空航天局研制出两架试验机:X-36试验型无尾无人战斗机。该型长5.7米,重88公斤,其大小相当于普通战斗机的28%。该型使用的分列副翼和转向推力系统比常规战斗机更具有灵活性。水平垂直的尾翼既减轻了重量和拉力,也缩小了雷达反射截面。
无人驾驶战斗机将执行的理想任务是压制敌防空、遮断、战斗损失评估、战区导弹防御以及超高空攻击,特别适合在政治敏感区执行任务。
20世纪晚期之前, 他们不过是比全尺寸的遥控飞机小一些而已。美国军方在这类飞行器上的兴趣不断增长,因为他们提供了成本低廉,极富任务弹性的战斗机器,这些战斗机器可以被使用而不存在飞行员死亡的风险。
20世纪90年代,海湾战争后,无人机开始飞速发展和广泛运用。美国军队曾经购买和自制先锋无人机在对伊拉克的第二次和第三次 海湾战争中作为可靠的系统。
20世纪90年代后,西方国家充分认识到无人机在战争中的作用,竞相把高新技术应用到无人机的研制与发展上:新翼型和轻型材料大大增加了无人机的续航时间;
采用先进的信号处理与通信技术提高了无人机的图像传递速度和数字化传输速度;先进的自动驾驶仪使无人机不再需要陆基电视屏幕领航,而是按程序飞往盘旋点,改变高度和飞往下一个目标。