A. 人工智能的分类包括哪些呀
人工智能领域六大分类:
1、深度学习:
深度学习是基于现有的数据进行学习操作,是机器学习研究中的一个新的领域,机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例像,声音和文本。深度学习是无监督学习的一种。
2、自然语言处理:
自然语言处理是用自然语言同计算机进行通讯的一种技术。人工智能的分支学科,研究用电子计算机模拟人的语言交际过程,使计算机能理解和运用人类社会的自然语言如汉语、英语等,实现人机之间的自然语言通信,以代替人的部分脑力劳动,包括查询资料、解答问题、摘录文献、汇编资料以及一切有关自然语言信息的加工处理。例如生活中的电话机器人的核心技术之一就是自然语言处理。
3、计算机视觉:
计算机视觉是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像;计算机视觉就是用各种成象系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完成处理和解释。计算机视觉的最终研究目标就是使计算机能像人那样通过视觉观察和理解世界,具有自主适应环境的能力。计算机视觉应用的实例有很多,包括用于控制过程、导航、自动检测等方面。
4、智能机器人:
如今我们的身边逐渐开始出现很多智能机器人,他们具备形形色色的内部信息传感器和外部信息传感器,如视觉、听觉、触觉、嗅觉。除具有感受器外,它还有效应器,作为作用于周围环境的手段。这些机器人都离不开人工智能的技术支持;科学家们认为,智能机器人的研发方向是,给机器人装上“大脑芯片”,从而使其智能性更强,在认知学 习、自动组织、对模糊信息的综合处理等方面将会前进一大步。
5、自动程序设计:
自动程序设计是指根据给定问题的原始描述,自动生成满足要求的程序。它是软件工程和人工智能相结合的研究课题。自动程序设计主要包含程序综合和程序验证两方面内容。前者实现自动编程,即用户只需告知机器“做什么”,无须告诉“怎么做”,这后一步的工作由机器自动完成;后者是程序的自动验证,自动完成正确性的检查。其目的是提高软件生产率和软件产品质量;自动程序设计的任务是设计一个程序系统,接受关于所设计的程序要求实现某个目标非常高级描述作为其输入,然后自动生成一个能完成这个目标的具体程序。该研究的重大贡献之一是把程序调试的概念作为问题求解的策略来使用。
6、数据挖掘:
数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。它通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。它的分析方法包括:分类、估计、预测、相关性分组或关联规则、聚类和复杂数据类型挖掘。
B. 什么是人工智能专家系统专家系统包括哪几个主要部分举例说明专家系统在环境工程领域的应用。
人工智能专家系统就是用人工智能的方法来模拟专家的特性以便使电脑可以向专家一样来解决问题,分为知识库,规则库和控制系统三部分。至于应用你就自己想吧,我对环境工程领域也不懂。
C. 人工智能一般有哪几种类型
1、反应机器。一个例子是 Deep Blue,这是一个在 20 世纪 90 年代击败 Garry Kasparov 的IBM国际象棋程序。深蓝可以识别棋盘上的棋子并进行预测,但它没有记忆,也无法使用过去的经验来通知未来的棋子。它分析了可能的举动 – 它自己和对手 – 并选择了最具战略性的举措。Deep Blue 和 Google 的 AlphaGO 专为狭隘目的而设计,不能轻易应用于其他情况。
2、有限的内存。这些 AI 系统可以使用过去的经验来为未来的决策提供信 自动驾驶车辆中的一些决策功能就是这样设计的。观察用于告知在不远的将来发生的行动,例如改变了车道的汽车。这些观察结果不会永久存储。
3、心理理论。这是一个心理学术语。它指的是其他人有自己的信念,欲望和意图影响他们做出的决定的理解。这种 AI 尚不存在。
4、自我意识。在这个类别中,AI 系统具有自我意识,具有意识。具有自我意识的机器了解其当前状态,并可以使用该信息来推断其他人的感受。这种类型的 AI 尚不存在。
D. 人工智能与专家系统概述
一、人工智能与专家系统
人工智能AI(Artificial Intelligence)是集计算机科学、神经科学、心理学、语言学、认知学、思维科学、控制论、信息论等多种学科于一体的新兴边缘科学,也是当代主要的高科技领域之一。人工智能可定义为用计算机来研究思维的科学,即由计算机来模仿和实现人类的智能行为的学科,如判断、图像识别、理解、学习、规划和问题求解。自1956年正式提出人工智能的概念后,四十多年以来,人工智能的研究已取得了重大进展,它的最主要的研究和应用领域有:专家系统、机器学习、模式识别、自然语言理解、机器人学、计算机视觉、分布式人工智能等。
专家系统ES(Expert System)是人工智能的一个重要分支,自20世纪60年代以来,专家系统得到研究、开发和利用,并取得重大进展。专家系统主要研究如何使计算机程序能模仿各个领域的人类专家在解决实际问题时的思维过程,使机器具有专家水平的智能。专家系统的出现,使人工智能的研究发生了重大的转变,它实现了人工智能从理论研究走向实际应用,是人工智能从一般思维规律探讨走向专门知识应用的重大突破。专家系统的成功使人们更清楚地认识到人工智能系统应该是一个知识处理系统,而知识表示、知识获取、知识利用则是人工智能系统的三个基本问题。从1985年起,专家系统愈来愈引起人们的关心和注意,在很多情况下,专家系统逐渐成为人工智能的代名词。
开发专家系统的关键是表达和运用专家知识,即来自人类专家并已被证明对解决有关领域内的典型问题是有用的事实和过程。它和传统的计算机程序最本质的不同之处在于专家系统所要解决的问题一般不能用算法解决,并且经常要在不完全、不精确或不确定的信息基础上做出结论。它应该是一个有相当数量权威性知识、并能运用这些知识解决特定领域中实际问题的计算机程序系统。它根据用户提供的数据、信息和事实,运用系统存储的专家经验和知识,进行推理判断,最后得出结论。同时给出这些结论的可信度,供用户决策之用。
专家系统通过推理的方法来解决问题,并且得到的结论和专家相同。专家系统的重要部分是推理,正是由于这一点,使专家系统不同于一般的资料系统和知识库系统。在专家系统中所存储的不是答案,而是进行推理的能力与知识。
二、地质专家系统
随着计算机的日益普及,专家系统在地质学中同样得到广泛应用。地质专家系统是在解决具有专家级规模和难度的地质问题中,用以局部地或全部地代替地质专家的计算机程序系统。地质专家经过长期学习和大量实践积累了丰富的知识和经验,他们的理论造诣很深,技术娴熟,工作稳妥高效。他们知道运用所掌握的知识解决具体问题的诀窍和避免失误的方法,并善于从多种信息中发现问题的本质,将遇到的新问题归结为自己熟悉的问题类型,从而迅速找到解决问题的有效途径。地质专家系统正是建立在地质专家丰富的知识和经验基础之上的。在这种系统中,具有由数量充足并达到一定权威性的地质知识建立的知识库,采取一定的推理策略,具备学习机制,能够对知识库进行补充和改进,用以提高解决地质问题的能力。专家系统在地学领域中的应用主要包括:矿产资源评价预测、矿床勘探、地质和测井资料分析、矿床地质特征监控、地质分类和对比、地质工程自动控制、遥感地质图形自动处理和地质成果评价等。
成矿预测是地质专家系统应用的重要领域,在这一领域中地质专家系统的应用最早、应用的面也最广泛,同时在地质专家系统的各种应用中具有最重要的意义。建立在矿床地质模型基础之上的“探矿者”(PROSPECTOR)专家系统是其中最著名的例子,该系统于1976年建立于美国斯坦福大学国际研究所人工智能中心,是世界上最早建立的3个专家系统之一。目前,其第二代产品PROSPECTOR Ⅱ包含了86个矿床模型和多于146个矿床的信息。该系统本身就是一个数字矿床模型专家系统,同时也是一个应用于成矿预测的计算机人工智能咨询系统,该系统无论是对专家系统研究本身或是对专家系统在地质领域中的应用都有重要意义。
E. 人工智能可以分为哪三个级别
1、弱人工智能
可以代替人力处理某一领域的工作。目前全球的人工智能水平大部分处于这一阶段。就像超越人类围棋水平的阿尔法狗,虽然已经超越了人类在围棋界的最高水平,不过在其他领域还是差的很远,所以只是弱人工智能。
2、强人工智能
拥有和人类一样的智能水平,可以代替一般人完成生活中的大部分工作。这也是所有人工智能企业目前想要实现的目标。走到这一步之后,机器人大量替代人类工作,进入生活就成为的现实。
3、超人工智能
人工智能的发展速度是很快的。当人工智能发展到强人工智能阶段的时候,人工智能就会像人类一样可以通过各种采集器、网络进行学习。每天它自身会进行多次升级迭代。而那个时候,人工智能的智能水平会完全超越人类。
(5)人工智能专家系统分类扩展阅读:
模式识别
采用模式识别引擎,分支有2D识别引擎 ,3D识别引擎,驻波识别引擎以及多维识别引擎。
2D识别引擎已推出指纹识别,人像识别 ,文字识别,图像识别 ,车牌识别;驻波识别引擎已推出语音识别。
自动工程
自动驾驶(OSO系统)。
印钞工厂(流水线)。
猎鹰系统(YOD绘图)。
知识工程
专家系统。
智能搜索引擎。
计算机视觉和图像处理。
机器翻译和自然语言理解。
数据挖掘和知识发现。
F. 人工智能的分类包括哪些
人工智能领域的分类包括,研究包括机器人、图像识别、语言识别、自然语言处理和专家系统等。人工智能是一门极富挑战性的科学,从事这项工作的人,必须懂得计算机知识、心理学和哲学。 人工智能主要有三个分支:1) 认知AI (cognitive AI) 认知计算是最受欢迎的一个人工智能分支,负责所有感觉“像人一样”的交互。认知AI必须能够轻松处理复杂性和二义性,同时还持续不断地在数据挖掘、NLP(自然语言处理)和智能自动化的经验中学习。 现在人们越来越倾向于认为认知AI混合了人工智能做出的最好决策和人类工作者们的决定,用以监督更棘手或不确定的事件。这可以帮助扩大人工智能的适用性,并生成更快、更可靠的答案。2) 机器学习AI (Machine Learning AI) 机器学习(ML)AI是能在高速公路上自动驾驶你的特斯拉的那种人工智能。它还处于计算机科学的前沿,但将来有望对日常工作场所产生极大的影响。机器学习是要在大数据中寻找一些“模式”,然后在没有过多的人为解释的情况下,用这些模式来预测结果,而这些模式在普通的统计分析中是看不到的。 然而机器学习需要三个关键因素才能有效: a) 数据,大量的数据 为了教给人工智能新的技巧,需要将大量的数据输入给模型,用以实现可靠的输出评分。例如特斯拉已经向其汽车部署了自动转向特征,同时发送它所收集的所有数据、驾驶员的干预措施、成功逃避、错误警报等到总部,从而在错误中学习并逐步锐化感官。 一个产生大量输入的好方法是通过传感器:无论你的硬件是内置的,如雷达,相机,方向盘等(如果它是一辆汽车的话),还是你倾向于物联网(Internet of Things)。蓝牙信标、健康跟踪器、智能家居传感器、公共数据库等只是越来越多的通过互联网连接的传感器中的一小部分,这些传感器可以生成大量数据(多到让任何正常的人来处理都太多)。G. 求问什么是专家系统
专家系统(expert system)是人工智能应用研究最活跃和最广泛的课题之一。 专家系统是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题,简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。 专家系统 expert system 运用特定领域的专门知识,通过推理来模拟通常由人类专家才能解决的各种复杂的、具体的问题,达到与专家具有同等解决问题能力的计算机智能程序系统。它能对决策的过程作出解释,并有学习功能,即能自动增长解决问题所需的知识。 发展简况 专家系统是人工智能中最重要的也是最活跃的一个应用领域,它实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。20世纪60年代初,出现了运用逻辑学和模拟心理活动的一些通用问题求解程序,它们可以证明定理和进行逻辑推理。但是这些通用方法无法解决大的实际问题,很难把实际问题改造成适合于计算机解决的形式,并且对于解题所需的巨大的搜索空间也难于处理。1965年,f.a.费根鲍姆等人在总结通用问题求解系统的成功与失败经验的基础上,结合化学领域的专门知识,研制了世界上第一个专家系统dendral ,可以推断化学分子结构。20多年来,知识工程的研究,专家系统的理论和技术不断发展,应用渗透到几乎各个领域,包括化学、数学、物理、生物、医学、农业、气象、地质勘探、军事、工程技术、法律、商业、空间技术、自动控制、计算机设计和制造等众多领域,开发了几千个的专家系统,其中不少在功能上已达到,甚至超过同领域中人类专家的水平,并在实际应用中产生了巨大的经济效益。 专家系统的发展已经历了3个阶段,正向第四代过渡和发展。第一代专家系统(dendral、macsyma等)以高度专业化、求解专门问题的能力强为特点。但在体系结构的完整性、可移植性等方面存在缺陷,求解问题的能力弱。第二代专家系统(mycin、casnet、prospector、hearsay等)属单学科专业型、应用型系统,其体系结构较完整,移植性方面也有所改善,而且在系统的人机接口、解释机制、知识获取技术、不确定推理技术、增强专家系统的知识表示和推理方法的启发性、通用性等方面都有所改进。第三代专家系统属多学科综合型系统,采用多种人工智能语言,综合采用各种知识表示方法和多种推理机制及控制策略,并开始运用各种知识工程语言、骨架系统及专家系统开发工具和环境来研制大型综合专家系统。在总结前三代专家系统的设计方法和实现技术的基础上,已开始采用大型多专家协作系统、多种知识表示、综合知识库、自组织解题机制、多学科协同解题与并行推理、专家系统工具与环境、人工神经网络知识获取及学习机制等最新人工智能技术来实现具有多知识库、多主体的第四代专家系统。 类型 对专家系统可以按不同的方法分类。通常,可以按应用领域、知识表示方法、控制策略、任务类型等分类。如按任务类型来划分,常见的有解释型、预测型、诊断型、调试型、维护型、规划型、设计型、监督型、控制型、教育型等。 体系结构 专家系统与传统的计算机程序系统有着完全不同的体系结构,通常它由知识库、推理机、综合数据库、知识获取机制、解释机制和人机接口等几个基本的、独立的部分所组成,其中尤以知识库与推理机相互分离而别具特色。专家系统的体系结构随专家系统的类型、功能和规模的不同,而有所差异。 为了使计算机能运用专家的领域知识,必须要采用一定的方式表示知识 。目前常用的知识表示方式有产生式规则、语义网络、框架、状态空间、逻辑模式、脚本、过程、面向对象等。基于规则的产生式系统是目前实现知识运用最基本的方法。产生式系统由综合数据库、知识库和推理机3个主要部分组成,综合数据库包含求解问题的世界范围内的事实和断言。知识库包含所有用“如果:〈前提〉,于是:〈结果〉”形式表达的知识规则。推理机(又称规则解释器)的任务是运用控制策略找到可以应用的规则。正向链的策略是寻找出前提可以同数据库中的事实或断言相匹配的那些规则,并运用冲突的消除策略,从这些都可满足的规则中挑选出一个执行,从而改变原来数据库的内容。这样反复地进行寻找,直到数据库的事实与目标一致即找到解答,或者到没有规则可以与之匹配时才停止。逆向链的策略是从选定的目标出发,寻找执行后果可以达到目标的规则;如果这条规则的前提与数据库中的事实相匹配,问题就得到解决;否则把这条规则的前提作为新的子目标,并对新的子目标寻找可以运用的规则,执行逆向序列的前提,直到最后运用的规则的前提可以与数据库中的事实相匹配,或者直到没有规则再可以应用时,系统便以对话形式请求用户回答并输入必需的事实。 早期的专家系统采用通用的程序设计语言(如fortran、pascal、basic等)和人工智能语言(如lisp、prolog、smalltalk等),通过人工智能专家与领域专家的合作,直接编程来实现的。其研制周期长,难度大,但灵活实用,至今尚为人工智能专家所使用。大部分专家系统研制工作已采用专家系统开发环境或专家系统开发工具来实现,领域专家可以选用合适的工具开发自己的专家系统,大大缩短了专家系统的研制周期,从而为专家系统在各领域的广泛应用提供条件。]