导航:首页 > 文件类型 > xdx文件如何转为word

xdx文件如何转为word

发布时间:2024-12-16 17:58:41

① 度分秒符号怎么打

问题一:'怎么打 就是度分秒的秒的代表符号。 在搜狗上打出汉字就会出现这些符号了
° ′ ″

问题二:Excel电子表格中怎么打 度分秒(°′″)就是角度 Excel电子表格中的度分秒可以在/插入/符号/找到,如常用的快捷方法,按ALT键不松,在小键盘的数字键中输入41443, 度就可以出来了。同理即 度分秒对应按41443 ,41444 ,41445 就行了,我回答了5次了为何通不过呀

问题三:分秒符号怎么打 分:′
秒:″
使用搜狗输入法,输入fen,第5个就是分的符号
同样,输入miao,第5个就是秒的符号

问题四:word2013怎么插入度分秒符号 5分 如果是搜狗拼音输入法的话,你只需要在需要插入相应的符号时输入度分秒的拼音即可选择相应的符号,举例,输入选择候选项3就是°,输入fen选择候选项5就是′,输入miao选择候选项5就是″

问题五:Excel 度分秒怎么输入 将单元格数字格式设置为自定义
000°00′00″
将此格式直接复制过去就可以,输入时直接输入一连串数字,如
135度12分32秒,输入1351232,单元格显示135°12′32″

问题六:如何输入度分秒? °′″是这几个字符吗?搜狗拼音输入法就有的,用汉语拼音键入( 3号键既是、fen 五号键、miao 五号键) 在cad中用搜狗拼音输入也一样,可以不用cad的字符输入,但是很多特殊符号搜狗拼音里没有,只能用cad里的字符输入。

问题七:在CAD中绘图时,怎样输入度分秒? 菜单逐级选:格式\单位\角度,将“十进制度数”改选为“度/分/秒”,形式多种,比如可选0d00’00”。假如绘直线图,在xdxx恭xx”前加输 问题八:分秒符号在键盘上怎么打 主键盘区右侧回车键左边那个键,不过要英文状态下才可以60’15“

问题九:word2010中如何插入度分秒 80°30′25″只要找到度分秒符号点击插入就OK。在搜狗输入法里工具箱里------【数学/单位】第二页
【° ′ ″ 】欢迎采纳谢谢!

问题十:'怎么打 就是度分秒的秒的代表符号。 在搜狗上打出汉字就会出现这些符号了
° ′ ″

② 将这段话变简体,没WORD,只好这样了

从牛顿的万有引力,我们看得出数学与物理有密切的关系,而且近三百年来的发展,更证明了物理几乎离不开数学:古典力学体系总结於 Lagrange 及 Hamilton 的微分方程式;联系宏观现象与微观现象(如气体动力学)用的是统计的方法;电磁学经由 Maxwell 方程式而脱胎换骨;狭义相对论找到 Minkowski 的非欧几何模型;广义相对论植基於 Riemann 几何学;量子力学的不同描述法经由泛函分析统一后,有新的诠释;基本粒子经由群论而看出一些规则性;最近的物理学则越来越用矢量丛的理论,做为其演绎的语言。物理学中,无论是决定论的想法,或是机率论的想法,数学总有相应的语言可资使用。另外,物理学中有些原理,如守恒原理、最小作用量原理、对称原理等,都是数学式的语言,很容易用数学的方法处理。

数学在物理学中有这麼重要,我们禁不住要问:「数学为什麼这麼有用?」「数学在物理理论的建立与演绎过程中到底扮演什麼样的角色?」

数学为什麼这麼有用?最简单的答案是:「自然说的是数学话。」这种想法大约起源於西元前600年左右。那时候一些希腊哲学家认为大自然是循然有序,依照一定模式来变化的。於是他们用数学的方法来描述变化的原因,预测变化的结果。他们最先认为自然是用整数来建立的,这就是毕氏学派的(数学)原子论。其后又认为自然是依几何方式来变化的,这种想法从西元前四世纪的同心球理论,到西元二世纪 Ptolemy 的周转圆理论而确立。Kepler 虽然舍弃了周转圆的理论,但他还是以几何的语言来描述行星的运动。

牛顿以及他那一世代的科学家都是虔诚的教徒,他们的发现虽然使人更确认自然是说数学话的,但也证明了天体运行和地面运动遵守同一定律,因此众星与地球没有什麼不同,而且上帝子民的地球居然也不过是躲在宇宙中的一个小角落裏。这样的发现虽然违反了宗教的固有信念,但他们到底在宗教与科学的两极中找到了平衡点:他们坚信上帝是个超级的数学家,科学家的努力只不过是在了解上帝创造宇宙的意图与计画。

然而由於人类一再用推论的方法寻找到了自然的规律,宗教信仰变成与科学工作无关的另一件事。拿破仑发现 Laplace 在其谈论宇宙系统的著作「天体力学」中居然没提到上帝,而以此相责。Laplace 回答说:「我并不需要这样的假定。」从此以后,科学的研究基本上与宗教的信仰分了家。

上帝是超级数学家的假定没有了,但是科学家还是坚信自然是说数学话的,数学继续成为科学工作者不可或缺的工具。到了二十世纪,科学家发现自然所说的数学话居然不完全是牛顿式的,於是科学家的态度有了一些改变,不再认为他们能够直接找到自然的真理;他们能做的是提供数学的模型,逐次逼近自然的真实状况。爱因斯坦说:「宇宙解不开的谜在於其可理解性。」又说:「迄今为止的经验使我们有理由认为,自然是最简单的、可以构想到的数学概念的一种体现。」

「自然说的是数学话」是否回答了「数学为什麼这麼有用」这个问题?自然是否说的是另一种我们还不知道的,比数学还真确或内容更丰富的语言?我们无法回答。许多数学家或物理学家对「数学为什麼有用」这个问题加以探讨,譬如 Wigner 的文章〈The unreasonable effectiveness of Mathematics in the natural sciences〉 注1 ,Dyson 的文章〈Mathematics in the physical sciences〉 注2 及 Kline 的书《Mathematics and the Search for Knowledge》 注3 ,都是很有名的。然而说来说去,他们的结论,无论是明指或是暗示,还是「自然说的是数学话」,或者转而举出许多「数学怎样有用」的例子,来说明「数学为什麼有用」。「自然说的是数学话」是物理学家的信念,否则他们的研究就会失去了方向。

讨论「数学为什麼有用」,很容易超出科学的范畴,进入哲学的领域。我们不想做哲学式的思辨;退一步,我们想知道「数学是怎样有用的」,因此把焦点转向第二个问题:「数学在物理理论的建立与演绎过程中,到底扮演什麼样的角色?」

还是以牛顿力学体系数学模型建立的过程为例。牛顿根据已有的物理观测,用数学帮著猜出向心平方反比的万有引力,按著又靠著数学,证明万有引力定律不但包容已知的 Kepler 行星运动定律,而且可以解释更多的已知现象,更进一步还能预测许多未知的景况。推敲新模型、核对已知、预测未来,数学在物理中帮著做这些事。

我们还可以从另一角度来看「数学是怎样有用的」,亦即,数学做为一种语言有什麼特色,使得它能对物理这麼有帮助。

首先,数学是种精简的语言。想想看,如果把数学字眼从 Kepler 的三个运动定律中拿掉,而代之以一般叙述性的用语,则如何把它们说得清楚?想想看,万有引力公式 F = GMm / R2,若用普通用语说出来,会成什麼样子?

有了精简的语言,用它来推论就很方便。如果推论是证明式的,那麼只要前题正确,其结论也是百分之百正确的;根据百分之百正确的结论再证明而得的新结论也是百分之百正确。如此反覆进行,所得的各个结论,虽然离开最原始的假设甚远,也不用担心其正确性。

反观其他求得结论的方法,如归纳、如类比、如例举,甚至臆测也可能得到正确性相当高的结论。但是如果这样的结论不是百分之百正确的。那麼据之再推得的新结论又要打折扣。如此,只要距离原始的假设稍远,结论的正确性,经过七折八扣,就几乎等於零了。

物理学中用数学做长程推论的,虽然不一定完全遵行严谨的证明程序,但总不会离得太远,其可靠性就相当大;用数学算出一个海王星是个出名的例子。

数学发展的特色之一,是建立内在自动推论的机制。臂如有了代数,算术的推论过程就由数本身的代数演算规则完全代替。有了坐标几何,几何问题也转成代数计算。微积分则代替了几何加上极限这种复杂的推论过程,而且微积分的运算又力求代数化。由此可见,数学之能成为犀利的推论工具,正是数学的一大特色。

数学语言由於精简,一些不是决定性的次要物理内涵不在式子中出现,而减少干扰。有些物理学家可从精简的数学公式,不经严格的推论而预想出一些未知的物理现象。Maxwell 把 Faraday 有关电磁场的想法数学化,归纳成几个简单的方程式,而使电学与磁学统合成电磁学。他更从这些方程式出发,推导出电磁波的方程式,而此电磁波在真空中的速度正与当时所知的光速相近,因此预测光也是一种电磁波,可见光只是电磁波谱中的一部分而已。后来发现无线电波,证明 Maxwell 预测的 Hertz 说:「我们不得不承认,这些数学公式不是完全人造的,它们本身是有智慧的。它们比我们还聪明,甚至比发现者也聪明。我们从这些公式所得到的,比当初放到这些公式中的还多。」

Dirac 把相对论用到量力子学裏,而得到有关电子波的一组方程式。从其中看出电子可能有正能量与负能量两种状态。假想在填满负能量的「电子海表」出了一个缺时,这个「空洞」的行为就如同一个带正电的粒子。此粒子不应该是质子,因其质量比电子大得多。所以他预测有一种称为正子的粒子,其质量及各种性质相同於电子,只是电性相反。他又预测有反质子。这些在日后都经实验证明为真;整个反粒子理论似乎就是从方程式中跳出来的。

类似的例子很多,尤其在量子力学及粒子理论中,更是到处可见。这种现象使 Wigner 有感而发,而把他的文章定为「数学在自然科学中令人无法理解的有效性」。

总而言之,从数学语言的特性来看,数学不但有表达、计算、推论的能力,甚至有时还有启发的功能,也难怪物理是离不开数学的。

然而在物理学的发展过程中,数学不是永远站在它这边的。同心球与周转圆理论,使天文学停留在错误的模型上长达1800年之久。Kepler 坚信圆与球是最完美的,等速是最合常理的,使得他在确立行星运动定律上多花了好几年。牛顿坚信古典几何的美,顺应时人的习惯,所以用古典几何写他的书。他的著作使人叹服,然而也妨碍别人做迅速而深入的了解。传统的积习常使人裹足不前。

另外,数学与物理各有其研究的目的与方法,两者在发展的过程当中虽然常相提携,但性格上却有不相容的地方。有良好的数学基础固然对物理的了解有很大的助益,然而物理绝不能单靠数学而能有所成的。

我们也可以把数学与物理的角色倒过来,看看物理如何促进数学的发展。古代的天文学使数学逐渐发展了复杂的计算方法与理论,如平面三角学、球面三角学、对数及内插法等就是。力学体系的建立,数学功不可没;但微积分、微分方程、变分法、复变函数论等分析学的各分支,无不因面对各种力学问题的挑战,而日益丰富起来。

从十九世纪开始,理论性数学发展迅速,受物理的刺激较少,数学与物理似乎分了家。然而自然是说数学话的,纯理论发展出来的数学,有些在日后就有用了,向量分析、非欧几何学、Riemann 几何学、泛函分析、机率论、统计方法、群论、矢量丛理论等等都是具体的例子。对物理而言,数学就像摆在橱窗裏的衣服,随时等候选用。

可是物理促发某些数学发展的传统并不就此消失。广义相对论使 Riemann 几何学的研究热络起来,Jordan、von Neumann、Wigner 等人为了量子力学而发展的某些矩阵理论,引发了所谓的 Jordan 代数;Dirac 的不是函数的 δ 函数,终於促使数学家研究起超函数 (distribution)。只要自然所说的数学话还没有真象大白,这种传统还是会继续下去的。

在惊叹数学对物理这麼有用之余,我们不得不提出上述几点,以免过分渲染数学在物理学中的客卿地位,而使物理学本身的特色模糊不清,或者使数学受益於物理的事实隐藏不显

阅读全文

与xdx文件如何转为word相关的资料

热点内容
js客户唯一标识 浏览:107
jack是什么app 浏览:155
桌面图标怎么只读文件 浏览:156
压缩文件存在解压后占内存吗 浏览:147
qq皮肤下载 浏览:458
禁止千牛升级 浏览:494
ps文件怎么解锁组 浏览:362
rar压缩文件夹 浏览:851
代码运行时如何降低时间和空间复杂度 浏览:576
压缩文件里的表格怎么保存 浏览:646
如何将文件夹改成xml格式 浏览:586
哪个网站可以买到绿幽灵水晶 浏览:823
qq15周年庆典活动 浏览:801
word的文件名被扩展了无效怎么办 浏览:268
win10不能玩逆战 浏览:725
越南人都是用什么app购物 浏览:224
ps与编程哪个好 浏览:901
app学什么呢 浏览:52
es文件浏览器颜色 浏览:440
手机淘宝应用程序未安装 浏览:581

友情链接