导航:首页 > 文件类型 > linuxcore文件调试

linuxcore文件调试

发布时间:2023-09-05 06:57:57

A. linux 怎么分析core文件

从接触unix开始就一直听到和遇到core mp,特别是刚学着使用C语言在AIX下编写程序的时候, mp更是时不时就会不请自来。记得当时刚写应用的时候,提交程序时最怕的就是在运行过程时遇到core mp,对于银行核心系统,特别是使用静态应用进程,如果一个相对频繁一点的交易导致core mp,那么毫无疑问,除了赶紧定位错误改程序外,重启进程甚至无法争取到多少缓冲的时间来进行代码的更正和测试。而且往往导致core mp的,就是程序中一个小小的未注意到或者未测试到的一个疏忽。

虽然常常遇到core mp,不过很长时间内,都是出于知道这个名字,知道它导致的后果,知道一部分导致它出现的原因,其他的就都不甚了了了。说起来,就是自己太懒了,懒得看书......少壮不努力啊。看过一则统计,说60岁以上的老人,超过70%都后悔少壮不努力,不知统计的数据能否反映整个社会的情况。不过总的来说,这句古话还是有些道理的。大家不要学我。哈哈

core mp,翻译过来讲,就是核心转储。大致上就是指,如果由于应用错误,如浮点异常、指令异常等,操作系统将会转入内核的异常处理,向对应的进程发送特定的信号(SIGNAL),如果进程中没有对这些信号进行处理,就会转入默认的处理,core mp就是其中的一种。如果进程core mp,系统将会终止该进程,同时系统会产生core文件,以供调试使用。这个core文件其实就是内存的映像,即进程执行的时候内存的内容,也就是所谓的core mp。平常大家说某某进程core mp了,其实主要的意思就是说:某某进程因为错误而被系统自动终止了。

AIX上提供了dbx工具可以对core mp进行调试,协助定位引起core mp的代码。最普通的语法是:
dbx 应用名 core文件, 然后使用where命令来显示调试信息
一般来讲,根据工作中遇到的情况,dbx还是能够比较轻松的根据提示的内容来定位代码的。不过也有一些特殊情况时,dbx显示的调试信息过于模糊或者不直观,这个时候就只能根据经验来逐步定位了。有时定位起来会耗用相当长的时间。遇到这种情况时,使用日志文件,通过在代码中穿插多个写log的语句,也可以协助发现。因为进程core mp时,日志当然也中断了,根据日志在哪个代码行之后或之前中止了,可以有效缩小寻找的范围。甚至,在有些情况下,使用日志定位是唯一简便的方法了。

B. 怎样用GDB调试core文件

一般这种情况都是因为数组越界访问,空指针或是野指针读写造成的。程序小的话还比较好办,对着源代码仔细检查就能解决。但是对于代码量较大的程序,里边包含N多函数调用,N多数组指针访问,这时想定位问题就不是很容易了(此时牛人依然可以通过在适当位置打printf加二分查找的方式迅速定位:P)。懒人的话还是直接GDB搞起吧。 神马是Core Dump文件偶尔就能听见某程序员同学抱怨“擦,又出Core了!”。简单来说,core mp说的是操作系统执行的一个动作,当某个进程因为一些原因意外终止(crash)的时候,操作系统会将这个进程当时的内存信息转储(mp)到磁盘上1。产生的文件就是core文件了,一般会以core.xxx形式命名。 如何产生Core Dump 发生doremp一般都是在进程收到某个信号的时候,Linux上现在大概有60多个信号,可以使用 kill -l 命令全部列出来。sagi@sagi-laptop:~$ kill -l 1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL 5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE 9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2 13) SIGPIPE 14) SIGALRM 15) SIGTERM 16) SIGSTKFLT 17) SIGCHLD 18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN 22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ 26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO 30) SIGPWR 31) SIGSYS 34) SIGRTMIN 35) SIGRTMIN+1 36) SIGRTMIN+2 37) SIGRTMIN+3 38) SIGRTMIN+4 39) SIGRTMIN+5 40) SIGRTMIN+6 41) SIGRTMIN+7 42) SIGRTMIN+8 43) SIGRTMIN+9 44) SIGRTMIN+10 45) SIGRTMIN+11 46) SIGRTMIN+12 47) SIGRTMIN+13 48) SIGRTMIN+14 49) SIGRTMIN+15 50) SIGRTMAX-14 51) SIGRTMAX-13 52) SIGRTMAX-12 53) SIGRTMAX-11 54) SIGRTMAX-10 55) SIGRTMAX-9 56) SIGRTMAX-8 57) SIGRTMAX-7 58) SIGRTMAX-6 59) SIGRTMAX-5 60) SIGRTMAX-4 61) SIGRTMAX-3 62) SIGRTMAX-2 63) SIGRTMAX-1 64) SIGRTMAX针对特定的信号,应用程序可以写对应的信号处理函数。如果不指定,则采取默认的处理方式, 默认处理是coremp的信号如下:3)SIGQUIT 4)SIGILL 6)SIGABRT 8)SIGFPE 11)SIGSEGV 7)SIGBUS 31)SIGSYS 5)SIGTRAP 24)SIGXCPU 25)SIGXFSZ 29)SIGIOT 我们看到SIGSEGV在其中,一般数组越界或是访问空指针都会产生这个信号。另外虽然默认是这样的,但是你也可以写自己的信号处理函数改变默认行为,更多信号相关可以看参考链接33。 上述内容只是产生coremp的必要条件,而非充分条件。要产生core文件还依赖于程序运行的shell,可以通过ulimit -a命令查看,输出内容大致如下:sagi@sagi-laptop:~$ ulimit -a core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheling priority (-e) 20 file size (blocks, -f) unlimited pending signals (-i) 16382 max locked memory (kbytes, -l) 64 max memory size (kbytes, -m) unlimited open files (-n) 1024 pipe size (512 bytes, -p) 8 POSIX message queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) 8192 cpu time (seconds, -t) unlimited max user processes (-u) unlimited virtual memory (kbytes, -v) unlimited file locks (-x) unlimited 看到第一行了吧,core file size,这个值用来限制产生的core文件大小,超过这个值就不会保存了。我这里输出是0,也就是不会保存core文件,即使产生了,也保存不下来==! 要改变这个设置,可以使用ulimit -c unlimited。 OK, 现在万事具备,只缺一个能产生Core的程序了,介个对C程序员来说太容易了。#include ; #include ; int crash() { char *xxx = "crash!!"; xxx[1] = 'D'; // 写只读存储区! return 2; } int foo() { return crash(); } int main() { return foo(); } 上手调试 上边的程序编译的时候有一点需要注意,需要带上参数-g, 这样生成的可执行程序中会带上足够的调试信息。编译运行之后你就应该能看见期待已久的“Segment Fault(core mped)”或是“段错误 (核心已转储)”之类的字眼了。看看当前目录下是不是有个core或是core.xxx的文件。祭出linux下经典的调试器GDB,首先带着core文件载入程序:gdb exefile core,这里需要注意的这个core文件必须是exefile产生的,否则符号表会对不上。载入之后大概是这个样子的:sagi@sagi-laptop:~$ gdb coremp core Core was generated by ./coremp'. Program terminated with signal 11, Segmentation fault. #0 0x080483a7 in crash () at coremp.c:8 8 xxx[1] = 'D'; (gdb)我们看到已经能直接定位到出core的地方了,在第8行写了一个只读的内存区域导致触发Segment Fault信号。在载入core的时候有个小技巧,如果你事先不知道这个core文件是由哪个程序产生的,你可以先随便找个代替一下,比如/usr/bin/w就是不错的选择。比如我们采用这种方法载入上边产生的core,gdb会有类似的输出:sagi@sagi-laptop:~$ gdb /usr/bin/w core Core was generated by ./coremp'. Program terminated with signal 11, Segmentation fault. #0 0x080483a7 in ? () (gdb)可以看到GDB已经提示你了,这个core是由哪个程序产生的。 GDB 常用操作 上边的程序比较简单,不需要另外的操作就能直接找到问题所在。现实却不是这样的,常常需要进行单步跟踪,设置断点之类的操作才能顺利定位问题。下边列出了GDB一些常用的操作。 启动程序:run
设置断点:b 行号|函数名
删除断点:delete 断点编号
禁用断点:disable 断点编号
启用断点:enable 断点编号
单步跟踪:next 也可以简写 n
单步跟踪:step 也可以简写 s
打印变量:print 变量名字
设置变量:set var=value
查看变量类型:ptype var
顺序执行到结束:cont
顺序执行到某一行: util lineno打印堆栈信息:bt

C. linux 小调用执行程序时 产生core文件,gdb调试时如下信息:

用gdb调试工具。 1、gcc -g 1.c 2、执行 目的是产生core文件 3、gdb ./a.out core 4、where

D. 谁能告诉我linux下出core,core究竟是什么

就是一个程序出错时,相关的调试信息,生成的一个文件。
可以对它调试,得到出错原因。
用gdb就可以了。但你的程序必须带gdb信息。
也就是说,在编译的时候要指定-g 参数。

E. linux下终端运行文件,代码没有错误,为什么出现段错误。

你代码也没有,调用堆栈也没有,谁能知道为啥段错误啊,要不然你猜我今天穿什么颜色的衣服?
大神也不敢说自己的代码肯定就没有错误,我猜你的意思是能正确编译吧?
那只能说明你的语法没错,仅此而已,写程序能正确编译只是第一步,后面调试的滑塌败工作还很漫长。
下面说说怎么调试吧:
看你的系统提示应该还没有打开core输出,在运行程序前打个命令:
ulimit -c unlimited
这样设置之后再运行程序在段错误的时候能core mp,有core之后再gdb ./test core.xxx
core文件一般在你运行程序的目录里,core文件后缀每次不同,后面的xxx你需要自衫芦己看看文件名,一般是运行时的PID号。当然如果你的系统core的生成规则被改过,不是默认的,那就问你的系统管理员去找到core文件。
进去后打个bt,看下当前的调用堆栈,然后再看下哪儿出的问题。
当然这样做有个前提,那就是你在编译信颤你的程序时加了-g参数,如果没有,重新去编译下再运行。
如果还是找不出来,再把你的调用堆栈和代码发上来大家看看。

F. linux core 怎么打开

core文件是由应用程序收到系统信号后崩溃产生的,该文件中记录了程序崩溃的原因(例如收到那种信号),调用堆栈和崩溃时的内存及变量值等等的信息。
打开core文件与编译时使用的编译器有关,但绝大多数linux程序是使用gcc编译器编译的,因此可使用对应gdb调试器打开,命令格式如下:
$ gdb 应用程序文件名 core文件名
举例:
$ gdb /usr/bin/gedit ~/core ------ 查看由gedit崩溃产生的core文件
(gdb) bt ------ 或者backtrace, 查看程序运行到当前位置之前所有的堆栈帧情况)
(gdb) quit ------ 退出

如果不知道core文件由哪个文件产生的,可使用file命令显示
$ file core

G. RedHat Linux下如何生成core mp文件

在linux平台下,设置core mp文件生成的方法:
1 )如何生成 coremp 文件
登陆 LINUX 服务器,任意位置键入
echo "ulimit -c 1024" >> /etc/profile
退出 LINUX 重新登陆 LINUX
键入 ulimit -c
如果显示 1024 那么说明 coremp 已经被开启。
1024 限制产生的 core 文件的大小不能超过 1024kb,可以使用参数unlimited,取消该限制
ulimit -c unlimited
2 ) . core 文件的简单介绍
在一个程序崩溃时,它一般会在指定目录下生成一个 core 文件。 core 文件仅仅是一个内存映象 ( 同时加上调试信息 ) ,主要是用来调试的。
3 ) . 开启或关闭 core 文件的生成
用以下命令来阻止系统生成 core 文件 :
ulimit -c 0
下面的命令可以检查生成 core 文件的选项是否打开 :
ulimit -a
该命令将显示所有的用户定制,其中选项 -a 代表“ all ”。
也可以修改系统文件来调整 core 选项
在 /etc/profile 通常会有这样一句话来禁止产生 core 文件,通常这种设置是合理的 :
# No core files by default
ulimit -S -c 0 > /dev/null 2>&1
但是在开发过程中有时为了调试问题,还是需要在特定的用户环境下打开 core 文件产生的设置。
在用户的 ~/.bash_profile 里加上 ulimit -c unlimited 来让特定的用户可以产生 core 文件。
如果 ulimit -c 0 则也是禁止产生 core 文件,而 ulimit -c 1024 则限制产生的 core 文件的大小不能超过 1024kb
4 ) . 设置 Core Dump 的核心转储文件目录和命名规则
/proc/sys/kernel/core_uses_pid 可以控制产生的 core 文件的文件名中是否添加 pid 作为扩展 ,如果添加则文件内容为 1 ,否则为 0
proc/sys/kernel/core_pattern 可以设置格式化的 core 文件保存位置或文件名 ,比如原来文件内容是 core-%e
可以这样修改 :
echo "/corefile/core-%e-%p-%t" > core_pattern
将会控制所产生的 core 文件会存放到 /corefile 目录下,产生的文件名为 core- 命令名 -pid- 时间戳
以下是参数列表 :
%p - insert pid into filename 添加 pid
%u - insert current uid into filename 添加当前 uid
%g - insert current gid into filename 添加当前 gid
%s - insert signal that caused the coremp into the filename 添加导致产生 core 的信号
%t - insert UNIX time that the coremp occurred into filename 添加 core 文件生成时的 unix 时间
%h - insert hostname where the coremp happened into filename 添加主机名
%e - insert coremping executable name into filename 添加命令名
6 ) . 一个小方法来测试产生 core 文件
直接输入指令 :
kill -s SIGSEGV $$
发生coremp一般都是在进程收到某个信号的时候,Linux上现在大概有60多个信号,可以使用 kill -l 命令全部列出来。
针对特定的信号,应用程序可以写对应的信号处理函数。如果不指定,则采取默认的处理方式, 默认处理是coremp的信号如下:

3)SIGQUIT 4)SIGILL 6)SIGABRT 8)SIGFPE 11)SIGSEGV 7)SIGBUS 31)SIGSYS
5)SIGTRAP 24)SIGXCPU 25)SIGXFSZ 29)SIGIOT

我们看到SIGSEGV在其中,一般数组越界或是访问空指针都会产生这个信号。另外虽然默认是这样的,但是你也可以写自己的信号处理函数改变默认行为。
上述内容只是产生coremp的必要条件,而非充分条件。要产生core文件还依赖于程序运行的shell,可以通过ulimit -a命令查看

H. core文件如何查看和调试

在Unix系统下,应用程序崩溃,一般会产生core文件,如何根据core文件查找问题的所在,并做相应的分析和调试,是非常重要的,本文对此做简单介绍。

例如,一个程序cmm_test_tool在运行的时候发生了错误,并生成了一个core文件,如下:

-rw-r–r– 1 root cmm_test_tool.c
-rw-r–r– 1 root
cmm_test_tool.o
-rwxr-xr-x 1 root cmm_test_tool
-rw--- 1 root
core.19344
-rw--- 1 root core.19351
-rw-r–r– 1 root
cmm_test_tool.cfg
-rw-r–r– 1 root cmm_test_tool.res
-rw-r–r– 1 root
cmm_test_tool.log
[root@AUTOTEST_SIM2 mam2cm]#

就可以利用命令gdb进行查找,参数一是应用程序的名称,参数二是core文件,运行
gdb
cmm_test_tool core.19344结果如下:

[root@AUTOTEST_SIM2 mam2cm]# gdb cmm_test_tool core.19344
GNU gdb Red Hat
Linux (5.2.1-4)
Copyright 2002 Free Software Foundation, Inc.
GDB is free
software, covered by the GNU General Public License, and you are
welcome to
change it and/or distribute copies of it under certain conditions.
Type “show
ing” to see the conditions.
There is absolutely no warranty for GDB. Type
“show warranty” for details.
This GDB was configured as
“i386-redhat-linux”…
Core was generated by `./cmm_test_tool’.
Program
terminated with signal 11, Segmentation fault.
Reading symbols from
/lib/i686/libpthread.so.0…done.
Loaded symbols for
/lib/i686/libpthread.so.0
Reading symbols from
/lib/i686/libm.so.6…done.
Loaded symbols for /lib/i686/libm.so.6
Reading
symbols from /usr/lib/libz.so.1…done.
Loaded symbols for
/usr/lib/libz.so.1
Reading symbols from
/usr/lib/libstdc++.so.5…done.
Loaded symbols for
/usr/lib/libstdc++.so.5
Reading symbols from
/lib/i686/libc.so.6…done.
Loaded symbols for /lib/i686/libc.so.6
Reading
symbols from /lib/libgcc_s.so.1…done.
Loaded symbols for
/lib/libgcc_s.so.1
Reading symbols from /lib/ld-linux.so.2…done.
Loaded
symbols for /lib/ld-linux.so.2
Reading symbols from
/lib/libnss_files.so.2…done.
Loaded symbols for /lib/libnss_files.so.2
#0
0×4202cec1 in __strtoul_internal () from
/lib/i686/libc.so.6
(gdb)

进入gdb提示符,输入where,找到错误发生的位置和堆栈,如下:

(gdb) where
#0 0×4202cec1 in __strtoul_internal () from
/lib/i686/libc.so.6
#1 0×4202d4e7 in strtoul () from
/lib/i686/libc.so.6
#2 0×0804b4da in GetMaxIDFromDB (get_type=2,
max_id=0×806fd20) at cmm_test_tool.c:788
#3 0×0804b9d7 in ConstrctVODProgram
(vod_program=0×40345bdc) at cmm_test_tool.c:946
#4 0×0804a2f4 in
TVRequestThread (arg=0×0) at cmm_test_tool.c:372
#5 0×40021941 in
pthread_start_thread () from /lib/i686/libpthread.so.0
(gdb)

至此,可以看出文件出错的位置是函数 GetMaxIDFromDB
,两个参数分别是2和0×806fd20,这个函数位于源代码的788行,基于此,我们就可以有针对性的找到问题的根源,并加以解决。

I. linux c内存溢出的core mp bug怎么跟

浅析Linux下core文件
当我们的程序崩溃时,内核有可能把该程序当前内存映射到core文件里,方便程序员找到程序出现问题的地方。最常出 现的,几乎所有C程序员都出现过的错误就是“段错误”了。也是最难查出问题原因的一个错误。下面我们就针对“段错误”来分析core文件的产生、以及我们 如何利用core文件找到出现崩溃的地方。
何谓core文件
当一个程序崩溃时,在进程当前工作目录的core文件中复制了该进程的存储图像。core文件仅仅是一个内存映象(同时加上调试信息),主要是用来调试的。
当程序接收到以下UNIX信号会产生core文件:

名字

说明

ANSI C POSIX.1

SVR4 4.3+BSD

缺省动作

SIGABRT

异常终止(abort)

. .

. .

终止w/core

SIGBUS

硬件故障

.

. .

终止w/core

SIGEMT

硬件故障

. .

终止w/core

SIGFPE

算术异常

. .

. .

终止w/core

SIGILL

非法硬件指令

. .

. .

终止w/core

SIGIOT

硬件故障

. .

终止w/core

SIGQUIT

终端退出符

.

. .

终止w/core

SIGSEGV

无效存储访问

. .

. .

终止w/core

SIGSYS

无效系统调用

. .

终止w/core

SIGTRAP

硬件故障

. .

终止w/core

SIGXCPU

超过CPU限制(setrlimit)

. .

终止w/core

SIGXFSZ

超过文件长度限制(setrlimit)

. .

终止w/core

在系统默认动作列,“终止w/core”表示在进程当前工作目录的core文件中复制了该进程的存储图像(该文件名为core,由此可以看出这种功能很久之前就是UNIX功能的一部分)。大多数UNIX调试程序都使用core文件以检查进程在终止时的状态。
core文件的产生不是POSIX.1所属部分,而是很多UNIX版本的实现特征。UNIX第6版没有检查条件 (a)和(b),并且其源代码中包含如下说明:“如果你正在找寻保护信号,那么当设置-用户-ID命令执行时,将可能产生大量的这种信号”。4.3 + BSD产生名为core.prog的文件,其中prog是被执行的程序名的前1 6个字符。它对core文件给予了某种标识,所以是一种改进特征。
表中“硬件故障”对应于实现定义的硬件故障。这些名字中有很多取自UNIX早先在DP-11上的实现。请查看你所使用的系统的手册,以确切地确定这些信号对应于哪些错误类型。
下面比较详细地说明这些信号。
• SIGABRT 调用abort函数时产生此信号。进程异常终止。
• SIGBUS 指示一个实现定义的硬件故障。
• SIGEMT 指示一个实现定义的硬件故障。
EMT这一名字来自PDP-11的emulator trap 指令。
• SIGFPE 此信号表示一个算术运算异常,例如除以0,浮点溢出等。
• SIGILL 此信号指示进程已执行一条非法硬件指令。
4.3BSD由abort函数产生此信号。SIGABRT现在被用于此。
• SIGIOT 这指示一个实现定义的硬件故障。
IOT这个名字来自于PDP-11对于输入/输出TRAP(input/output TRAP)指令的缩写。系统V的早期版本,由abort函数产生此信号。SIGABRT现在被用于此。
• SIGQUIT 当用户在终端上按退出键(一般采用Ctrl-\)时,产生此信号,并送至前台进
程组中的所有进程。此信号不仅终止前台进程组(如SIGINT所做的那样),同时产生一个core文件。
• SIGSEGV 指示进程进行了一次无效的存储访问。
名字SEGV表示“段违例(segmentation violation)”。
• SIGSYS 指示一个无效的系统调用。由于某种未知原因,进程执行了一条系统调用指令,
但其指示系统调用类型的参数却是无效的。
• SIGTRAP 指示一个实现定义的硬件故障。
此信号名来自于PDP-11的TRAP指令。
• SIGXCPU SVR4和4.3+BSD支持资源限制的概念。如果进程超过了其软C P U时间限制,则产生此信号。
• SIGXFSZ 如果进程超过了其软文件长度限制,则SVR4和4.3+BSD产生此信号。
摘自《UNIX环境高级编程》第10章 信号。

使用core文件调试程序
看下面的例子:
/*core_mp_test.c*/
#include
const char *str = "test";
void core_test(){
str[1] = 'T';
}

int main(){
core_test();
return 0;
}
编译:
gcc –g core_mp_test.c -o core_mp_test
如果需要调试程序的话,使用gcc编译时加上-g选项,这样调试core文件的时候比较容易找到错误的地方。
执行:
./core_mp_test
段错误
运行core_mp_test程序出现了“段错误”,但没有产生core文件。这是因为系统默认core文件的大小为0,所以没有创建。可以用ulimit命令查看和修改core文件的大小。
ulimit -c 0
ulimit -c 1000
ulimit -c 1000
-c 指定修改core文件的大小,1000指定了core文件大小。也可以对core文件的大小不做限制,如:
ulimit -c unlimited
ulimit -c unlimited
如果想让修改永久生效,则需要修改配置文件,如 .bash_profile、/etc/profile或/etc/security/limits.conf。
再次执行:
./core_mp_test
段错误 (core mped)
ls core.*
core.6133
可以看到已经创建了一个core.6133的文件.6133是core_mp_test程序运行的进程ID。
调式core文件
core文件是个二进制文件,需要用相应的工具来分析程序崩溃时的内存映像。
file core.6133
core.6133: ELF 32-bit LSB core file Intel 80386, version 1 (SYSV), SVR4-style, from 'core_mp_test'
在Linux下可以用GDB来调试core文件。
gdb core_mp_test core.6133
GNU gdb Red Hat Linux (5.3post-0.20021129.18rh)
Copyright 2003 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show ing" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux-gnu"...
Core was generated by `./core_mp_test'.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /lib/tls/libc.so.6...done.
Loaded symbols for /lib/tls/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x080482fd in core_test () at core_mp_test.c:7
7 str[1] = 'T';
(gdb) where
#0 0x080482fd in core_test () at core_mp_test.c:7
#1 0x08048317 in main () at core_mp_test.c:12
#2 0x42015574 in __libc_start_main () from /lib/tls/libc.so.6
GDB中键入where,就会看到程序崩溃时堆栈信息(当前函数之前的所有已调用函数的列表(包括当前函数),gdb只显示最近几个),我们很容易找到我们的程序在最后崩溃的时候调用了core_mp_test.c 第7行的代码,导致程序崩溃。注意:在编译程序的时候要加入选项-g。您也可以试试其他命令,如fram、list等。更详细的用法,请查阅GDB文档。
core文件创建在什么位置
在进程当前工作目录的下创建。通常与程序在相同的路径下。但如果程序中调用了chdir函数,则有可能改变了当前工 作目录。这时core文件创建在chdir指定的路径下。有好多程序崩溃了,我们却找不到core文件放在什么位置。和chdir函数就有关系。当然程序 崩溃了不一定都产生core文件。
什么时候不产生core文件
在下列条件下不产生core文件:
( a )进程是设置-用户-ID,而且当前用户并非程序文件的所有者;
( b )进程是设置-组-ID,而且当前用户并非该程序文件的组所有者;
( c )用户没有写当前工作目录的许可权;
( d )文件太大。core文件的许可权(假定该文件在此之前并不存在)通常是用户读/写,组读和其他读。
利用GDB调试core文件,当遇到程序崩溃时我们不再束手无策。

J. linux 下如何打开core mp文件开关

mp文件可以在程序crash时,方便我们查看程序crash的地方和上下文信息。在window下,要能生成mp文件,需要自己编写相应的代码。不过现在网上可以找到相应的代码,只要把它下载后然后加到自己的工程中去,就可以了! 在linux下面就简单的许多。只要打开相应的开关,linux会自动在程序crash时生成相应的core文件。这个文件和window下的mp文件类似。 下面是简单的一些步骤: 1.查看当前是否已经打开了此开关 通过命令:ulimit -c 如果输出为 0 ,则代表没有打开。如果为unlimited则已经打开了,就没必要在做打开。 2.通过命令打开 ulimit -c unlimited .然后通过步骤1,可以监测是否打开成功。 3.如果你要取消,很简单:ulimit -c 0 就可以了 通过上面的命令修改后,一般都只是对当前会话起作用,当你下次重新登录后,还是要重新输入上面的命令,所以很麻烦。我们可以把通过修改 /etc/profile文件 来使系统每次自动打开。步骤如下: 1.首先打开/etc/profile文件 一般都可以在文件中找到 这句语句:ulimit -S -c 0 /dev/null 2&1.ok,根据上面的例子,我们只要把那个0 改为 unlimited 就ok了。然后保存退出。 2.通过source /etc/profile 使当期设置生效。 3.通过ulimit -c 查看下是否已经打开。 其实不光这个命令可以加入到/etc/profile文件中,一些其他我们需要每次登录都生效的都可以加入到此文件中,因为登录时linux都会加载此文件。比如一些环境变量的设置。 还有一种方法可以通过修改/etc/security/limits.conf文件来设置,这个方法没有试过,也是网上看到。不过上面两种就可以了! 最后说一下生成core mp文件的位置,默认位置与可执行程序在同一目录下,文件名是core.***,其中***是一个数字。core mp文件名的模式保存在/proc/sys/kernel/core_pattern中,缺省值是core。通过以下命令可以更改core mp文件的位置(如希望生成到/tmp/cores目录下) echo “/tmp/cores/core” /proc/sys/kernel/core_pattern 设置完以后我们可以做个测试,写个程序,产生一个异常。然后看到当前目录会有个core*的文件。然后我们可以 gdb core。* 程序 进行调试。

阅读全文

与linuxcore文件调试相关的资料

热点内容
ps做网站教程 浏览:959
什么app软件买机票便宜 浏览:874
盛京医院开药在APP挂什么科 浏览:842
初三一模后如何教学视频教程 浏览:902
车床编程如何通过度数来编程 浏览:93
安卓2k17怎么设置首发 浏览:945
b站微信 浏览:567
手机2个微信 浏览:914
常用手机下载的文件在哪里 浏览:669
phpmemcache所有版本 浏览:738
ps自动排版文件名去 浏览:4
java网络爬虫入门到精通 浏览:481
最火直播app 浏览:44
苹果6ssim卡应用程序 浏览:889
qq浮动窗口代码 浏览:232
备件管理有哪些好用的手机app 浏览:847
小米网络音箱如何关机 浏览:916
usb数据线哪个是火线 浏览:164
win10提示重新激活windows10 浏览:13
手机自装app如何卸载 浏览:689

友情链接