在Linux下一切资源皆文件,普通文件是文件,磁盘打印机是文件,socket 当然也是文件。
关于Linux下系统,进程能最大能打开的文件描述符数看过好多文章,但大都没有完整,详细说明每个值表示什么意思,在实践中该怎么设置?
如何通过最简单的设置来实现最有效的性能调优,如何在有限资源的条件下保证程序的运作?
max-file 表示系统级别的能够打开的文件句柄的数量,是对整个系统的限制,并不是针对用户的。
ulimit -n 控制进程级别能够打开的文件句柄的数量,提供对shell及其启动的进程的可用文件句柄的控制,这是进程级别的。
对于服务器来说,file-max和ulimit都需要设置,否则会出现文件描述符耗尽的问题。
一般如果遇到文件句柄达到上限时,会碰到"Too many open files"或者Socket/File: Can’t open so many files等错误。
相关的3个文件:
/proc/sys/fs/file-max
/proc/sys/fs/file-nr
/etc/security/limits.conf
/proc/sys/fs/file-max
Linux系统级别限制所有用户进程能打开的文件描述符总数。
max-file 表示系统级别的能够打开的文件句柄的数量,是对整个系统的限制,并不是针对用户的。
/etc/security/limits.conf
用户级别的限制是通过可以通过命令ulimit命令和文件/etc/security/limits.conf
/proc/sys/fs/file-nr 该参数是只读的,不能修改。
file-nr的值由3部分组成:
1,已经分配的文件描述符数;
2,已经分配但未使用的文件描述符数;
3,内核最大能分配的文件描述符数
/proc/${pid}/fd
众所周知,在相应进程的/proc/$pid/fd 目录下存放了此进程所有打开的fd。
当然有些可能不是本进程自己打开的,如通过fork()从父进程继承而来的。
那么这个socket:后面的一串数字是什么呢?其实是该socket的inode号。
那么,知道了某个进程打开的socket的inode号后,我们可以做什么呢?
这就涉及到/proc/net/tcp(udp对应/proc/net/udp)文件了,其中也列出了相应socket的inode号通过比对此字段,我们能在/proc/net/tcp下获得此套接口的其他信息,如对应的<本地地址:端口号,远端地址:端口号>对,窗口大小,状态等信息。
具体字段含义详见net/ipv4/tcp_ipv4.c 中的 tcp4_seq_show 函数。
如果socket创建了,没有被使用,那么就只会在/proc/pid/fd下面有,而不会在/proc/net/下面有相关数据。
目录中的每一项都是一个符号链接,指向打开的文件,数字则代表文件描述符。
其中0 = /dev/null ,1 = stdout, 2 = stderr,用cat或tail查看即可。
Number of file descriptors: different between /proc/sys/fs/file-nr and /proc/$pid/fd?
https://serverfault.com/questions/485262/number-of-file-descriptors-different-between-proc-sys-fs-file-nr-and-proc-pi
Linux中最大文件描述符数
https://leokongwq.github.io/2016/11/09/linux-max-fd.html
How do linux file descriptor limits work?
https://stackoverflow.com/questions/3991223/how-do-linux-file-descriptor-limits-work
limits.conf(5) - Linux man page
https://linux.die.net/man/5/limits.conf
Why can't I tail -f /proc/$pid/fd/1 ?
https://unix.stackexchange.com/questions/152773/why-cant-i-tail-f-proc-pid-fd-1
Linux查看进程运行输出(/proc/<pid>/fd)
https://blog.csdn.net/u014756245/article/details/120023188
B. Linux 里面重复创建socket 与 串口 返回文件描述符都为0怎么办 相互影响吗
你想问的东西可能很简单,可是你对问题的描述让我无法帮助你
socket断线?
不可能返回描述符为0的,有错误会返回-1,0是标准输入的文件描述符哦
C. linux文件描述符
Linux 下,一切皆文件
在Linux操作系统中,可以将一切都看作是文件,包括普通文件,目录文件,字符设备文件(如键盘,鼠标…),块设备文件(如硬盘,光驱…),套接字等等,所有一切均抽象成文件,提供了统一的接口,方便应用程序调用。
既然在Linux操作系统中,你将一切都抽象为了文件,那么对于一个打开的文件,我应用程序怎么对应上呢?
文件描述符应运而生。
文件描述符:File descriptor,简称fd,当应用程序请求内核打开/新建一个文件时,内核会返回一个文件描述符用于对应这个打开/新建的文件,其fd本质上就是一个 非负整数 。实际上,它是一个索引值,指向 内核为每一个进程所维护的该进程打开文件的记录表。当程序打开一个现有文件或者创建一个新文件时,内核向进程返回一个文件描述符。 在程序设计中,一些涉及底层的程序编写往往会围绕着文件描述符展开。但是文件描述符这一概念往往只适用于UNIX、Linux这样的操作系统。
操作系统的核心叫内核,是一个独立的软件。
操作系统为每一个进程维护了一个文件描述符表,该表的索引值都从从0开始的,所以在不同的进程中可以看到相同的文件描述符,这种情况下相同的文件描述符可能指向同一个文件,也可能指向不同的文件,具体情况需要具体分析,下面用一张简图就可以很容易的明白了。
通过上图可以看到,当不同进程中出现相同的文件描述符时,可能实际对应的文件并不是同一个,相反不同进程中不同的文件描述符也可可能对应同一个文件。
当一个应用程序刚刚启动的时候,0是标准输入,1是标准输出,2是标准错误。如果此时去打开一个新的文件,它的文件描述符会是3。POSIX标准要求每次打开文件时(含socket)必须使用当前进程中最小可用的文件描述符号。
文件描述符是一个重要的系统资源,理论上系统内存多大就应该可以打开多少个文件描述符,但是实际情况是,内核会有系统级限制,以及用户级限制(不让某一个应用程序进程消耗掉所有的文件资源,可以使用ulimit -n 查看)。
进程 + 文件描述符ID确认,因为内核为每个进程都有一份其所属的文件描述符表。
所以linux下两个进程返回的文件描述符是不一样的
多个进程之间的fd:
应用程序进程拿到的 文件描述符ID 对应 进程文件描述符表 的索引,通过索引拿到 文件指针 ,指向系统级文件描述符表的 文件偏移量 ,再通过文件偏移量找到 inode指针 ,最终对应到真实的文件。
D. linux串口读取问题
首先你确定你那串口是否有东西可读? 就是你上面说的“一个文件不停的写数据到串口”!你版可以先不这样权读取,你可以在终端上用cat试试是否有数据可读:cat /dev/ttyS0
如果有的话,那你就检查串口设置是否正确,如波特率,数据位,停止位,校验位等!
最后就是你读取的函数了,看看先不要用printf打印字符串了,先看看十六进制是否有,然后再看字符等!
就是以上一些,你还可以参考Linux下串口文档,网络上很多的……
E. Linux查看进程打开多少文件描述符命令
1、当linux打开一个文抄件的时候,Linux内核会为每一个进程在/proc/ 建立一个以其pid
为名的目录用来保存进程的相关信息,而其子目录fd保存的是该进程打开的所有文件的fd(fd:file descriptor)。
2、例如/proc/13844/fd/目录(13844为pid)
3、ps -ef|grep java
root 13884 1 0 Aug15 ? 08:51:38 /doyoo/jdk1.8/bin/java
4、ll /proc/13884/fd
F. linux怎样获取文件描述符
打开一个文件就能获得一个文件描述符
G. Linux C 配置串口
配置串口需要包含头文件
其中最核心的配置结构体为:
如何获取该结构呢?我们操作串口跟操作文件一样,也是调用 open() 函数来打开串口,
这样我们就能够得到一个文件描述符 fd ,然后就可以调用 tcgetattr() 函数来获取上述配置结构体了。
Linux 串口默认的配置为:波特率 9600,数据位 8 位,无奇偶校验,停止位 1 位,无 CTS/RTS 。
以下介绍一些常用的配置项:波特率、奇偶校验、数据位、停止位、硬件控制流。
相关接口:
Linux 将串口的波特率分为了输入波特率和输出波特率,不过最常用的场景是将两者设置成一样。
cfgetispeed() 函数获取输入波特率, cfgetospeed() 函数获取输出波特率。 cfsetispeed() 函数设置输入波特率, cfsetospeed() 函数用于设置输出波特率,当然 cfsetspeed() 函数扩展为同时设置输入和输出波特率。
上述接口中的 speed_t 是一系列波特率的标志位,例如常用的 115200 波特率就为 B115200,参考下述选项:
设置奇偶校验位可以通过修改 termios 结构体中的 c_cflag 成员来实现,若无校验,则将 PARENB 位设为 0;若有校验,则 PARENB 为 1。之后再根据 PARODD 来区分奇偶校验, PARODD 为 1 表示奇校验, PARODD 为 0 表示偶校验。例如设置无奇偶校验位:
设置数据位可以通过修改 termios 结构体中的 c_cflag 成员来实现,CS5、CS6、CS7 和 CS8 分别代表数据位 5、6、7 和 8。不过在设置数据位之前,需要先用 CSIZE 来做屏蔽字段,清楚这几个标志位,例如设置数据位为 8 位:
设置停止位可以通过修改 termios 结构体中的 c_cflag 成员来实现, CSTOPB 位为 1 表示 2 位停止位, CSTOPB 位为 0 标志 1 位停止位。例如设置停止位为 1 位:
设置硬件控制流可以通过修改 termios 结构体中的 c_cflag 成员来实现, CRTSCTS 为 1 表示使用硬件控制流,为 0 表示不使用硬件控制流。例如使能硬件控制流:
当然,最后还需要用 tcflush() 抛弃存储在 fd 里的未接收的数据。
再利用接口 tcsetattr() 函数将配置信息写入文件描述符 fd :
这样整个串口最常用的用法就配置完成了。
具体的配置使用可以参考我的项目 HCI-Middleware 里的 hci_transport_uart_linux.c 文件。
参考:
H. 请问程序中linux如何获取可用的串口列表
|dmesg | grep tty
下面是一个例子,例子中采用的是USB转串口线(pl2303)。
插入线:
$ dmesg|grep tty
[ 0.000000] console [tty0] enabled
[ 1.248404] serial8250: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A
[ 1.624590] 00:07: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A
[ 12.618301] usb 5-2: pl2303 converter now attached to ttyUSB0
拔出线:
$ dmesg|grep tty
[ 0.000000] console [tty0] enabled
[ 1.248404] serial8250: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A
[ 1.624590] 00:07: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A
[ 12.618301] usb 5-2: pl2303 converter now attached to ttyUSB0
[ 375.392303] pl2303 ttyUSB0: pl2303 converter now disconnected from ttyUSB0
这样程序中应该不难判断了吧。
【参考】http://www.cyberciti.biz/faq/find-out-linux-serial-ports-with-setserial/
I. 如何查看linux下串口是否可用串口名称等
分析如下:
1、查看串口是否可用,可以对串口发送数据比如对com1口,echo lyjie126 > /dev/ttyS0。
2、查看串口名称使用ls-l/dev/ttyS* 一般情况下串口的名称全部在dev下面,如果你没有外插串口卡的话默认是dev下的ttyS* ,一般ttyS0对应com1,ttyS1对应com2,当然也不一定是必然的;
3、查看串口驱动:cat /proc/tty/drivers/serial。
4、查看串口设备:dmesg | grep ttyS*。
(9)linux获取串口的文件描述符扩展阅读
串口控制器顾名思义,就是可通过串口实现控制功能的一台控制器。即由上位机通过串口发送特定协议格式的指令给控制器,进而来控制外围设备或器件,也叫单片机串口控制器。
串口控制器就是1台写入了串口通信程序的单片机控制器,有2种工作模式:
1)上位机监控模式:可由上位机串口控制,实现串口监控;
2)脱机控制模式:在通过上位机设置好相关参数后,也可脱离上位机进行独立控制。
串口控制器就是1台写入了串口通信程序的单片机控制器,有2种工作模式:
1)上位机监控模式:可由上位机串口控制,实现串口监控;
2)脱机控制模式:在通过上位机设置好相关参数后,也可脱离上位机进行独立控制。
J. linux怎么读取串口数据
#include<stdio.h>
#include<stdlib.h>
#include<unistd.h>
#include<sys/types.h>
#include<sys/stat.h>
#include<fcntl.h>
#include<termios.h>
#include<errno.h>
#defineFALSE-1
#defineTRUE0
intspeed_arr[]={B38400,B19200,B9600,B4800,B2400,B1200,B300,B38400,B19200,B9600,B4800,B2400,B1200,B300,};
intname_arr[]={38400,19200,9600,4800,2400,1200,300,38400,19200,9600,4800,2400,1200,300,};
voidset_speed(intfd,intspeed){
inti;
intstatus;
structtermiosOpt;
tcgetattr(fd,&Opt);
for(i=0;i<sizeof(speed_arr)/sizeof(int);i++){
if(speed==name_arr[i]){
tcflush(fd,TCIOFLUSH);
cfsetispeed(&Opt,speed_arr[i]);
cfsetospeed(&Opt,speed_arr[i]);
status=tcsetattr(fd,TCSANOW,&Opt);
if(status!=0){
perror("tcsetattrfd1");
return;
}
tcflush(fd,TCIOFLUSH);
}
}
}
intset_Parity(intfd,intdatabits,intstopbits,intparity)
{
structtermiosoptions;
if(tcgetattr(fd,&options)!=0){
("SetupSerial1");
return(FALSE);
}
options.c_cflag&=~CSIZE;
switch(databits)
{
case7:
options.c_cflag|=CS7;
break;
case8:
options.c_cflag|=CS8;
break;
default:
fprintf(stderr,"Unsupporteddatasize ");return(FALSE);
}
switch(parity)
{
case'n':
case'N':
options.c_cflag&=~PARENB;/*Clearparityenable*/
options.c_iflag&=~INPCK;/*Enableparitychecking*/
break;
case'o':
case'O':
options.c_cflag|=(PARODD|PARENB);
options.c_iflag|=INPCK;/*Disnableparitychecking*/
break;
case'e':
case'E':
options.c_cflag|=PARENB;/*Enableparity*/
options.c_cflag&=~PARODD;
options.c_iflag|=INPCK;/*Disnableparitychecking*/
break;
case'S':
case's':/*asnoparity*/
options.c_cflag&=~PARENB;
options.c_cflag&=~CSTOPB;break;
default:
fprintf(stderr,"Unsupportedparity ");
return(FALSE);
}
switch(stopbits)
{
case1:
options.c_cflag&=~CSTOPB;
break;
case2:
options.c_cflag|=CSTOPB;
break;
default:
fprintf(stderr,"Unsupportedstopbits ");
return(FALSE);
}
/*Setinputparityoption*/
if(parity!='n')
options.c_iflag|=INPCK;
tcflush(fd,TCIFLUSH);
options.c_cc[VTIME]=150;
options.c_cc[VMIN]=0;/*UpdatetheoptionsanddoitNOW*/
if(tcsetattr(fd,TCSANOW,&options)!=0)
{
perror("SetupSerial3");
return(FALSE);
}
return(TRUE);
}
intmain()
{
printf("Thisprogramupdateslasttimeat%s%s ",__TIME__,__DATE__);
printf("STDIOCOM1 ");
intfd;
fd=open("/dev/ttyS0",O_RDWR);
if(fd==-1)
{
perror("serialporterror ");
}
else
{
printf("open");
printf("%s",ttyname(fd));
printf("succesfully ");
}
set_speed(fd,115200);
if(set_Parity(fd,8,1,'N')==FALSE){
printf("SetParityError ");
exit(0);
}
charbuf[]="fe55aa07bc010203040506073d";
write(fd,&buf,26);
charbuff[512];
intnread;
while(1)
{
if((nread=read(fd,buff,512))>0)
{
printf(" Len:%d ",nread);
buff[nread+1]='