1. 大数据处理在实际生活中有哪些应用
现在越来越多的行业和技术领域需要用到大数据分析处理系统。说到大数据处理,首先我们来好好了解一下大数据处理流程。
1.数据采集,搭建数据仓库,数据采集就是把数据通过前端埋点,接口日志调用流数据,数据库抓取,客户自己上传数据,把这些信息基础数据把各种维度保存起来,感觉有些数据没用(刚开始做只想着功能,有些数据没采集, 后来被老大训了一顿)。
2.数据清洗/预处理:就是把收到数据简单处理,比如把ip转换成地址,过滤掉脏数据等。
3.有了数据之后就可以对数据进行加工处理,数据处理的方式很多,总体分为离线处理,实时处理,离线处理就是每天定时处理,常用的有阿里的maxComputer,hive,MapRece,离线处理主要用storm,spark,hadoop,通过一些数据处理框架,可以吧数据计算成各种KPI,在这里需要注意一下,不要只想着功能,主要是把各种数据维度建起来,基本数据做全,还要可复用,后期就可以把各种kpi随意组合展示出来。
4.数据展现,数据做出来没用,要可视化,做到MVP,就是快速做出来一个效果,不合适及时调整,这点有点类似于Scrum敏捷开发,数据展示的可以用datav,神策等,前端好的可以忽略,自己来画页面。
大数据处理在各行业的渗透越来越深入,例如金融行业需要使用大数据系统结合 VaR(value at risk) 或者机器学习方案进行信贷风控,零售、餐饮行业需要大数据系统实现辅助销售决策,各种 IOT 场景需要大数据系统持续聚合和分析时序数据,各大科技公司需要建立大数据分析中台等等。
2. 大数据技术有哪些应用表现形式
1、数据剖析及发掘
数据计算及剖析主要是根据存储的海量数据进行普通的剖析和分类汇总,以满足大多数常见的剖析需求。数据发掘一般没有预先设定好的主题,主要是在现有数据上面进行根据各种算法的计算,然后起到预测的效果,完成高档其他数据剖析的需求,丰富的历史数据是数据发掘的先决条件。
2、机器学习
监督式学习算法是从带标签(标注)的训练样本中树立的训练样本中树立形式,并依此推测新的数据标签的算法。比如回归、神经网络、决策树、支持向量机、贝叶斯、随机森林。无监督式学习算法是在学习时并不知道其分类成果,意图是去对原始材料进行分类,以便了解材料内部结构的算法。比如聚类、主成分剖析、线性判别剖析降维。
3、数据仓库
从企业视点来说,无论是数据库、数据仓库还是大数据都是处理不同需求、处理不同级别数据量的技能,它们之间并无冲突。针对不同需求和现状进行技能选择,各种技能相互弥补、相互协作。现在阶段关于大部分企业来说,想要展开一个全新的大数据项目似乎无从下手。
4、数据安全
大数据蕴藏着价值信息,但数据安全面临着严峻挑战。一方面,大数据自身的安全防护存在漏洞。虽然云计算对大数据供给了便当,但对大数据的安全操控力度不够,API拜访权限操控以及密钥出产,存储和办理方面的缺乏都可能造成数据走漏。另一方面,在用数据发掘和数据剖析等大数据技能获取价值信息的同时,攻击者也在利用这些大数据技能进行攻击。
关于大数据技术有哪些应用表现形式,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。