㈠ 几种数学的描述数据方法 好象有扇形图,折线图 还有那些
虽然不大清楚你真正要问什么,不过描述数据的方法至少应该有下面3项才对:
1.解析法:
枚举法:将所有数据描述一遍,中间用逗号分隔开;
方程形式:通过列方程或者方程组描述所得结果
2..列表法:
建一个矩形并做出划分,对数据类型,数据信息及具体情况做统计
3.图形法:(形象直观地描述参数的具体情况)
折线图
扇形图
柱形图
函数图
望对你有所帮助(*^__^*)
谢谢~
㈡ 大数据工程师常见数据分析方法是什么
1、可视化分析
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让群众们以更直观,更易懂的方式了解结果。
2、数据挖掘算法
数据挖掘又称数据库中的知识发现人工智能机式别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。
3、预测性分析能力
预测性分析结合了多种高级分析功能,包括特设统计分析、预测性建模、数据挖掘、文本分析、优化、实时评分、机器学习等。这些工具可以帮助企业发现数据中的模式,并超越当前所发生的情况预测未来进展。
4、语义引擎
由于非结构化数据的多样性带来了数据分析的新的挑战,需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
5、数据质量和数据管理
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。
㈢ 常用的大数据分析方法
1. Analytic Visualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
2. Data Mining Algorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
3. Predictive Analytic Capabilities(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
4. Semantic Engines(语义引擎)
由于非结构化数据的多样性带来了数据分析的新的挑战,需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
5. Data Quality and Master Data Management(数据质量和数据管理)
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。
㈣ 数据分析方法一般分为哪三种
1、漏斗分析
漏斗分析是指通过数据分析找到有问题的业务环节,并对其优化。
漏斗分析两大作用:其一,漏斗分析可以对各个业务阶段的用户、流量的变化进行监控,及时分析低转化率的环节,找出流失的关键,并不断优化。其二,漏斗分析可以根据不同的人群、渠道,进行差异化的分析,比如新渠道、新客户,分析出最佳的和最差的,这样能够提高操作的准确性和效率。
3、对比分析法
对比分析法即对比数据,分析差别,可以直观地看到某个方面的变化或差距,并能准确量化地表示这些变化或差距。对比分析既可以基于时间进行对比,也可以基于分类,如部门、地区、类别等进行对比。在工作中,我们会使用对比分析法比较多,比如,如上年的销量对比、目标与实际对比等。我们拍梁渣在对比的过程中要注意要找相似的对比对象。比如,佛山的人口与上海的人口对比就没有可比性,是毫无意义的。