导航:首页 > 数据分析 > 怎么将大数据读到bitmap

怎么将大数据读到bitmap

发布时间:2025-01-24 16:21:40

『壹』 介绍一下海量数据的处理方法

介绍一下海量数据的处理方法
适用范围:可以用来实现数据字典,进行数据的判重,或者集合求交集
基本原理及要点:
对于原理来说很简单,位数组+k个独立hash函数。将hash函数对应的值的位数组置1,查找时如果发现所有hash函数对应位都是1说明存在,很明显这个过程并不保证查找的结果是100%正确的。同时也不支持删除一个已经插入的关键字,因为该关键字对应的位会牵动到其他的关键字。所以一个简单的改进就是 counting Bloom filter,用一个counter数组代替位数组,就可以支持删除了。
还有一个比较重要的问题,如 何根据输入元素个数n,确定位数组m的大小及hash函数个数。当hash函数个数k=(ln2)*(m/n)时错误率最小。在错误率不大于E的情况 下,m至少要等于n*lg(1/E)才能表示任意n个元素的集合。但m还应该更大些,因为还要保证bit数组里至少一半为0,则m应 该>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2为底的对数)。
举个例子我们假设错误率为0.01,则此时m应大概是n的13倍。这样k大概是8个。
注意这里m与n的单位不同,m是bit为单位,而n则是以元素个数为单位(准确的说是不同元素的个数)。通常单个元素的长度都是有很多bit的。所以使用bloom filter内存上通常都是节省的。
扩展:
Bloom filter将集合中的元素映射到位数组中,用k(k为哈希函数个数)个映射位是否全1表示元素在不在这个集合中。Counting bloom filter(CBF)将位数组中的每一位扩展为一个counter,从而支持了元素的删除操作。Spectral Bloom Filter(SBF)将其与集合元素的出现次数关联。SBF采用counter中的最小值来近似表示元素的出现频率。
问题实例:给你A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL。如果是三个乃至n个文件呢?
根据这个问题我们来计算下内存的占用,4G=2^32大概是40亿*8大概是340亿,n=50亿,如果按出错率0.01算需要的大概是650亿个bit。 现在可用的是340亿,相差并不多,这样可能会使出错率上升些。另外如果这些urlip是一一对应的,就可以转换成ip,则大大简单了。
2.Hashing
适用范围:快速查找,删除的基本数据结构,通常需要总数据量可以放入内存
基本原理及要点:
hash函数选择,针对字符串,整数,排列,具体相应的hash方法。
碰撞处理,一种是open hashing,也称为拉链法;另一种就是closed hashing,也称开地址法,opened addressing。
扩展:
d-left hashing中的d是多个的意思,我们先简化这个问题,看一看2-left hashing。2-left hashing指的是将一个哈希表分成长度相等的两半,分别叫做T1和T2,给T1和T2分别配备一个哈希函数,h1和h2。在存储一个新的key时,同时用两个哈希函数进行计算,得出两个地址h1[key]和h2[key]。这时需要检查T1中的h1[key]位置和T2中的h2[key]位置,哪一个位置已经存储的(有碰撞的)key比较多,然后将新key存储在负载少的位置。如果两边一样多,比如两个位置都为空或者都存储了一个key,就把新key 存储在左边的T1子表中,2-left也由此而来。在查找一个key时,必须进行两次hash,同时查找两个位置。
问题实例:1).海量日志数据,提取出某日访问网络次数最多的那个IP。

IP的数目还是有限的,最多2^32个,所以可以考虑使用hash将ip直接存入内存,然后进行统计。

3.bit-map

适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下

基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码

扩展:bloom filter可以看做是对bit-map的扩展

问题实例:

1)已知某个文件内包含一些电话号码,每个号码为8位数字,统计不同号码的个数。

8位最多99 999 999,大概需要99m个bit,大概10几m字节的内存即可。

2)2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

将bit-map扩展一下,用2bit表示一个数即可,0表示未出现,1表示出现一次,2表示出现2次及以上。或者我们不用2bit来进行表示,我们用两个bit-map即可模拟实现这个2bit-map。

4.堆

适用范围:海量数据前n大,并且n比较小,堆可以放入内存

基本原理及要点:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我们比较当前元素与最大堆里的最大元素,如果它小于最大元素,则应该替换那个最大元 素。这样最后得到的n个元素就是最小的n个。适合大数据量,求前n小,n的大小比较小的情况,这样可以扫描一遍即可得到所有的前n元素,效率很高。

扩展:双堆,一个最大堆与一个最小堆结合,可以用来维护中位数。

问题实例:
1)100w个数中找最大的前100个数。

用一个100个元素大小的最小堆即可。

5.双层桶划分

适用范围:第k大,中位数,不重复或重复的数字

基本原理及要点:因为元素范围很大,不能利用直接寻址表,所以通过多次划分,逐步确定范围,然后最后在一个可以接受的范围内进行。可以通过多次缩小,双层只是一个例子。

扩展:

问题实例:
1).2.5亿个整数中找出不重复的整数的个数,内存空间不足以容纳这2.5亿个整数。

有点像鸽巢原理,整数个数为2^32,也就是,我们可以将这2^32个数,划分为2^8个区域(比如用单个文件代表一个区域),然后将数据分离到不同的区域,然后不同的区域在利用bitmap就可以直接解决了。也就是说只要有足够的磁盘空间,就可以很方便的解决。

2).5亿个int找它们的中位数。

这个例子比上面那个更明显。首先我们将int划分为2^16个区域,然后读取数据统计落到各个区域里的数的个数,之后我们根据统计结果就可以判断中位数落到那个区域,同时知道这个区域中的第几大数刚好是中位数。然后第二次扫描我们只统计落在这个区域中的那些数就可以了。

实际上,如果不是int是int64,我们可以经过3次这样的划分即可降低到可以接受的程度。即可以先将int64分成2^24个区域,然后确定区域的第几 大数,在将该区域分成2^20个子区域,然后确定是子区域的第几大数,然后子区域里的数的个数只有2^20,就可以直接利用direct addr table进行统计了。

6.数据库索引

适用范围:大数据量的增删改查

基本原理及要点:利用数据的设计实现方法,对海量数据的增删改查进行处理。
扩展:
问题实例:

7.倒排索引(Inverted index)

适用范围:搜索引擎,关键字查询

基本原理及要点:为何叫倒排索引?一种索引方法,被用来存储在全文搜索下某个单词在一个文档或者一组文档中的存储位置的映射。

以英文为例,下面是要被索引的文本:
T0 = “it is what it is”
T1 = “what is it”
T2 = “it is a banana”
我们就能得到下面的反向文件索引:
“a”: {2}
“banana”: {2}
“is”: {0, 1, 2}
“it”: {0, 1, 2}
“what”: {0, 1}
检索的条件”what”, “is” 和 “it” 将对应集合的交集。

正 向索引开发出来用来存储每个文档的单词的列表。正向索引的查询往往满足每个文档有序频繁的全文查询和每个单词在校验文档中的验证这样的查询。在正向索引中,文档占据了中心的位置,每个文档指向了一个它所包含的索引项的序列。也就是说文档指向了它包含的那些单词,而反向索引则是单词指向了包含它的文档,很 容易看到这个反向的关系。

扩展:

问题实例:文档检索系统,查询那些文件包含了某单词,比如常见的学术论文的关键字搜索。

8.外排序

适用范围:大数据的排序,去重

基本原理及要点:外排序的归并方法,置换选择 败者树原理,最优归并树

扩展:

问题实例:
1).有一个1G大小的一个文件,里面每一行是一个词,词的大小不超过16个字节,内存限制大小是1M。返回频数最高的100个词。

这个数据具有很明显的特点,词的大小为16个字节,但是内存只有1m做hash有些不够,所以可以用来排序。内存可以当输入缓冲区使用。

9.trie树

适用范围:数据量大,重复多,但是数据种类小可以放入内存

基本原理及要点:实现方式,节点孩子的表示方式

扩展:压缩实现。

问题实例:
1).有10个文件,每个文件1G, 每个文件的每一行都存放的是用户的query,每个文件的query都可能重复。要你按照query的频度排序 。

2).1000万字符串,其中有些是相同的(重复),需要把重复的全部去掉,保留没有重复的字符串。请问怎么设计和实现?

3).寻找热门查询:查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个,每个不超过255字节。

10.分布式处理 maprece

适用范围:数据量大,但是数据种类小可以放入内存

基本原理及要点:将数据交给不同的机器去处理,数据划分,结果归约。

扩展:

问题实例:

1).The canonical example application of MapRece is a process to count the appearances of

each different word in a set of documents:
void map(String name, String document):
// name: document name
// document: document contents
for each word w in document:
EmitIntermediate(w, 1);

void rece(String word, Iterator partialCounts):
// key: a word
// values: a list of aggregated partial counts
int result = 0;
for each v in partialCounts:
result += ParseInt(v);
Emit(result);
Here, each document is split in words, and each word is counted initially with a “1″ value by

the Map function, using the word as the result key. The framework puts together all the pairs

with the same key and feeds them to the same call to Rece, thus this function just needs to

sum all of its input values to find the total appearances of that word.

2).海量数据分布在100台电脑中,想个办法高效统计出这批数据的TOP10。

3).一共有N个机器,每个机器上有N个数。每个机器最多存O(N)个数并对它们操作。如何找到N^2个数的中数(median)?

经典问题分析

上千万or亿数据(有重复),统计其中出现次数最多的前N个数据,分两种情况:可一次读入内存,不可一次读入。

可用思路:trie树+堆,数据库索引,划分子集分别统计,hash,分布式计算,近似统计,外排序

所 谓的是否能一次读入内存,实际上应该指去除重复后的数据量。如果去重后数据可以放入内存,我们可以为数据建立字典,比如通过 map,hashmap,trie,然后直接进行统计即可。当然在更新每条数据的出现次数的时候,我们可以利用一个堆来维护出现次数最多的前N个数据,当 然这样导致维护次数增加,不如完全统计后在求前N大效率高。

如果数据无法放入内存。一方面我们可以考虑上面的字典方法能否被改进以适应这种情形,可以做的改变就是将字典存放到硬盘上,而不是内存,这可以参考数据库的存储方法。
当然还有更好的方法,就是可以采用分布式计算,基本上就是map-rece过程,首先可以根据数据值或者把数据hash(md5)后的值,将数据按照范围划分到不同的机子,最好可以让数据划分后可以一次读入内存,这样不同的机子负责处理各种的数值范围,实际上就是map。得到结果后,各个机子只需拿出各 自的出现次数最多的前N个数据,然后汇总,选出所有的数据中出现次数最多的前N个数据,这实际上就是rece过程。
实际上可能想直接将数据均分到不同的机子上进行处理,这样是无法得到正确的解的。因为一个数据可能被均分到不同的机子上,而另一个则可能完全聚集到一个机子上,同时还可 能存在具有相同数目的数据。比如我们要找出现次数最多的前100个,我们将1000万的数据分布到10台机器上,找到每台出现次数最多的前 100个,归并之后这样不能保证找到真正的第100个,因为比如出现次数最多的第100个可能有1万个,但是它被分到了10台机子,这样在每台上只有1千个,假设这些机子排名在1000个之前的那些都是单独分布在一台机子上的,比如有1001个,这样本来具有1万个的这个就会被淘汰,即使我们让每台机子选出出现次数最多的1000个再归并,仍然会出错,因为可能存在大量个数为1001个的发生聚集。因此不能将数据随便均分到不同机子上,而是要根据hash 后的值将它们映射到不同的机子上处理,让不同的机器处理一个数值范围。
而外排序的方法会消耗大量的IO,效率不会很高。而上面的分布式方法,也可以用于单机版本,也就是将总的数据根据值的范围,划分成多个不同的子文件,然后逐个处理。处理完毕之后再对这些单词的及其出现频率进行一个归并。实际上就可以利用一个外排序的归并过程。
另外还可以考虑近似计算,也就是我们可以通过结合自然语言属性,只将那些真正实际中出现最多的那些词作为一个字典,使得这个规模可以放入内存。

『贰』 BitMap及其在ClickHouse中的应用

问题要从面试或者大数据场景下最常见的一个算法说起,问题是这样的,假如有几十亿个unsigned int类型的数据,要求去重或者计算总共有多少不重复的数据?最简单的办法就是直接利用一个HashMap,进行去重。但是这里面有个内存使用量的问题,几十亿个元素,即使不考虑HashMap本身实现所用到的数据结果,单单key本身,假如每个unsigned int占用4个字节,简单算一下的话,这里都需要几十GB的内存占用,因此,这里就引出了BItMap。
BItMap的思想非常简单,就是用一个bit表示一个二元的状态,比如有或者没有,存在或者不存在,用bit本身的位置信息,对应不同的数据。比如针对上面的问题,我们可以开辟一个2^32 bit的内存空间,每一个bit存储一个unsigned int类型的数据,有就是1,没有就是0,总共需要存储unsigned int类型的最大范围个数据,也就是2^32 个数据,这个2^32其实就是所谓的基数。如下图所示:

假如存在数字8,那就把对应的第8位的值赋为1。上图插入的数据为1、3、7、8。接着依次把所有的数据遍历然后更新这个BitMap。这样我们就可以得到最终结果。

假如上面的问题变成了对几十亿个URL做判断,那应该怎么去做呢?URL没有办法和BitMap的位置关系对应上,所以,我们需要加一层哈希,把每个URL经过哈希运算得到一个整数,然后对应上BitMap。如下图所示:

但是有哈希,肯定会存在碰撞,如果BitMap基数(也就是长度)比较小,那碰撞的概率就大,如果基数比较大,那占用的空间又会比较多。Bloom Filter的思想就是引入多个哈希函数来解决冲突的问题。也就是说对每个URL,经过多个哈希函数的运算,得到多个值,每个数值对应的BitMap的对应的位置都赋值为1。这个两个URL经过多个哈希函数结果还是一样的概率就大大降低。

但是由于依然存在冲突的可能性(其实冲突就是来源于我们BitMap的长度小于了数据量的基数,这也就是牺牲了准确性换来了空间使用的减少),所以Bloom Filter 存在假阳性的概率,不适用于任何要求 100% 准确率的场景,也就是说Bloom Filter 只能用来判无,不能用来判有。比如一个URL经过多次哈希运算之后,发现对应的BitMap的位置都已经是1了,那也不能说明,这个URL之前存在过了,也有可能是哈希冲突的结果。但是一个URL经过多次哈希运算之后,发现对应的BitMap的位置不是都是1,那当前URL之前一定是没有存在过的。

可以看到,Bloom Filter 引入多次哈希,在查询效率和插入效率不变的情况下,用较少空间的BitMap解决大数据量的判断问题。

大部分情况下仅仅做有无的判断是不能满足使用需求的,我们还是需要真正意义上的BitMap(可以方便的用来做交并等计算),但是最好可以在基数比较大的时候,依然可以占用相对比较小的空间。这就是RoaringBitMap所要实现的。

简单来说RoaringBitMap是BitMap的一种带索引的复杂BitMap数据结构。以32位的RoaringBitMap为例,首先划分2^16 个空间(Container),每个Container内部都是一个大小为2^16 bit的BitMap,总的内存使用量还是2^32 = 512Mb。这样的话和普通的BitMap是没有区别的,而RoaringBitMap的创新之处在于每个Container内的BitMap是在没有使用到的情况下是可以不分配内存空间的。这样可以大大减小内存的使用量。

(这个图片是Roaring Bitmaps: Implementation of an Optimized Software Library 论文原图)

要将一个4个字节的数据插入RoaringBitMap,首先要用数据的高16位,找到对应的Container,然后用数据的低16在Container中插入。
在每个Container内部,RoaringBitMap不是简单的用BitMap来进行数据的存储,而是把Container的类型划分为几种,不同的Container用来存储不同情况的数据。

当2个字节(4个字节的原数据,低16位用来插入具体的Container中)的数据,总的个数小于4096个的时候,当前Container使用 array Container。为什么是4096个呢?4096*2B=8Kb,而一个Container如果是bitmap的结构的话,最多也就是2^16bit=8Kb的空间。所以这里当数据个数小于4096使用array Container会更节省空间。当然这里名字为array Container,实际上是链表结构,不需要最开始就初始化4096个short int的数组。

当array Container存储的数到4096个的时候(也就是使用内存到8Kb的时候),array Container会转换为bitmap container,bitmap container就是一个2^16 bit普通的bitmap,可以存储2^16 = 65536个数据。这个8Kb还有一个好处,是可以放到L1 Cache中,加快计算。

这个严格的说,只是一种数据压缩存储方法的实现。其压缩原理是对于连续的数字只记录初始数字以及连续的长度,比如有一串数字 12,13,14,15,16 那么经过压缩后便只剩下12,5。从压缩原理我们也可以看出,这种算法对于数据的紧凑程度非常敏感,连续程度越高压缩率也越高。当然也可以实现其他的压缩方法。

RoaringBitMap其核心就在于加了一层索引,利用复杂的数据结构换取了空间上的效率。需要注意的是这里并没有增加计算的复杂度,其出色的数据结构让其在做交并计算的时候性能也毫不逊色。

ClickHouse中有bloom_filter类型的Skipping indexs,可以方便的用来过滤数据。

ClickHouse实现了大量的BitMap的函数,用来操作BitMap。ClickHouse中的BitMap在32位的时候用的是Set实现的,大于32位的时候也是使用RoaringBitMap实现的。我们这里不看具体的函数,我们来看一个典型的使用场景。

最常见的一个场景是根据标签来进行用户的圈选。常见的解决办法是有一张用户标签表,比如

要查询标签tag1='xx'和tag2='xx'的用户需要执行SQL:

但是由于不可能对每个tag列构建一级索引,所以这条SQL执行的效率并不高。可选的一种方式是先构建关于标签的BitMap数据结果,然后进行查询:

(1) 创建tag的bitmap表:

(2)写入数据

(3)查询

如果有多张tag表,进行交并计算(要比普通的用户表进行JOIN或者IN计算要高效很多):

『叁』 Redis 大数据内存优化 (RoaringBitmap)

最近碰到手机设备匹配的业务, 用户在我司后台可以上传人群包, 里面存放的是设备的MD5标识符; 一个人群包大概有千万级的MD5数据, 与广告请求所携带设备标识进行匹配.

尝试插入1kw条数据, key为设备MD5值, value为1, 此时Redis中存在1kw条key-value键值对.

通过 info 指令查看内存占用:

8bit = 1b = 0.001kb
bitmap即位图, 就是通过最小的单位bit来进行0或者1的设置,表示某个元素对应的值或者状态。
一个bit的值,或者是0,或者是1;也就是说一个bit能存储的最多信息是2。

场景: 有用户id分别为1, 2, 3, 4, 5, 6, 7, 8的用户, 其中用户2, 5在今日登录, 统计今
日登录用户

采用位图存储: 用户id为偏移量, 可以看做是在位图中的索引, value为true

通过 bitcount 获取登录用户数为2:

测试offset从1-1kw连续整数时候的内存占用:

可以发现内存占用仅为 1.19MB, 1个亿的数据也才12MB, 极大的减少了内存;

由于我们的业务没有如此完美的情况出现, 采用设备MD5的hash做Offset, 不会出现连续正整数的情况;

各常用Hash函数性能对比: https://byvoid.com/zhs/blog/string-hash-compare/

所以我们接下来测试1kw条MD5数据的位图内存占用:

查看Redis内存占用:

问题: 为什么同样1kw的bitmap, MD5数据的Hash占用会比 测试一 的多200倍?

将32位无符号整数按照高16位分桶,即最多可能有216=65536个桶,称为container。存储数据时,按照数据的高16位找到container(找不到就会新建一个),再将低16位放入container中。也就是说,一个RBM就是很多container的集合。

图中示出了三个container:

1kw条MD5数据的插入:

阅读全文

与怎么将大数据读到bitmap相关的资料

热点内容
苹果5s拆机后屏幕不亮 浏览:680
win10什么键一键到桌面图标 浏览:711
用哪个命令查看文件内容比较合适 浏览:539
苹果手机怎么玩nba2k14 浏览:773
数据库插入数据怎么弄 浏览:83
windows2008密码策略 浏览:953
华为手机移动数据怎么变了超流畅 浏览:908
win10拷贝3个文件安装 浏览:315
中国国家统计局代码查询 浏览:716
升级win10之后c盘会清空吗 浏览:341
pdf文件替换一页怎么做 浏览:757
绘图仪打印文件路径在哪里改 浏览:234
bp神经网络预测的matlab实现 浏览:334
javaucbrowser95 浏览:187
word2007自动生成目录怎么修改 浏览:623
iphone叉叉助手打开什么也没有 浏览:880
如何采集pdf文件 浏览:73
什么是数据差异性 浏览:574
js清空ul下的所有li 浏览:445
c语言abs的头文件 浏览:773

友情链接