导航:首页 > 数据分析 > 大数据架构有哪些应该如何理解

大数据架构有哪些应该如何理解

发布时间:2024-11-25 18:41:55

大数据用什么架构

大数据的架构主要包括分布式文件系统、NoSQL数据库、列式数据库、云计算平台等。


一、分布式文件系统


大数据的存储和管理依赖于分布式文件系统。这类架构将文件分散存储在多个服务器上,利用多台服务器共同处理数据,实现数据的分布式存储和处理。这种架构可以有效地提高数据存储的可靠性和数据处理的速度。


二、NoSQL数据库


对于大数据的处理,NoSQL数据库是一个重要的组成部分。与传统的关系型数据库不同,NoSQL数据库更适合处理大量、非结构化的数据。这种数据库架构具有可扩展性强、灵活性强、读写性能高等特点,可以很好地满足大数据处理的需求。


三、列式数据库


列式数据库是大数据架构中另一种重要的数据存储方式。它与传统的关系型数据库的行式存储不同,列式存储可以更好地满足大数据分析的需求。列式数据库针对列进行存储和处理,可以大大提高大数据查询和分析的效率。


四、云计算平台


云计算平台是大数据架构的重要支撑。云计算平台可以提供弹性的计算资源,根据大数据处理的需求动态地分配计算资源。同时,云计算平台还可以提供数据的安全存储、备份和恢复等功能,保障大数据的安全性和可靠性。


综上所述,大数据的架构包括分布式文件系统、NoSQL数据库、列式数据库以及云计算平台等。这些架构共同协作,实现了大数据的高效存储、处理和查询,满足了大数据时代对数据处理的巨大需求。

Ⅱ 关于大数据架构的相关知识

随着科技的发展和社会的进步,大数据、人工智能等新兴技术开始进入了我们的生活。我们已经从信息时代跨入了大数据时代,而大数据是一个十分火热的技术,现如今大数据已经涉及到了各行各业的方方面面。但是目前而言,很多人对于大数据不是十分清楚,下面我们就给大家讲一讲大数据的架构知识。
1.大数据架构的特点
一般来说,大数据的架构是比较复杂的,大数据的应用开发过于偏向底层,具有学习难度大,涉及技术面广的问题,这制约了大数据的普及。所以我们必须开发一种技术,把大数据开发中一些通用的,重复使用的基础代码、算法封装为类库,降低大数据的学习门槛,降低开发难度,提高大数据项目的开发效率。
2.大数据在工作的应用
大数据在工作中的应用有三种,第一种就是与业务相关,比如用户画像、风险控制等。第二种就是与决策相关,数据科学的领域,了解统计学、算法,这是数据科学家的范畴。第三种就是与工程相关,如何实施、如何实现、解决什么业务问题,这是数据工程师的工作。由此可见大数据是一门高深的学问。
3.对数据源的分类
根据数据源的特点,我们可以把数据源分为四大类。第一类就是从来源来看分为内部数据和外部数据,第二类就是从结构来看分为非结构化数据和结构化数据,第三类就是从可变性来看分为不可变可添加数据和可修改删除数据,第四类就是从规模来看分为大量数据和小量数据。这四类将大数据的数据源表达的淋漓尽致。完善了大数据的数据源。
4.为什么重视数据源?
为什么大数据平台十分重视数据源呢?这是因为大数据平台第一个要素就是数据源,我们要处理的数据源往往是在业务系统上,数据分析的时候可能不会直接对业务的数据源进行处理,而是先经过数据采集、数据存储,之后才是数据分析和数据处理。所以大数据平台十分重视数据源。
在这篇文章中我们给大家介绍了大数据架构的具体知识,大体包括大数据架构的特点、大数据在工作的应用、对数据源的分类、为什么重视数据源,希望这篇文章能够帮助大家更好地理解大数据。

Ⅲ 大数据系统架构包含内容涉及哪些

【导语】大数据的应用开发过于偏向底层,具有学习难度大,涉及技术面广的问题,这制约了大数据的普及。大数据架构是大数据技术应用的一个非常常见的形式,那么大数据系统架构包含内容涉及哪些?下面我们就来具体了解一下。

1、数据源

所有大数据架构都从源代码开始。这可以包含来源于数据库的数据、来自实时源(如物联网设备)的数据,及其从应用程序(如Windows日志)生成的静态文件。

2、实时消息接收

假如有实时源,则需要在架构中构建一种机制来摄入数据。

3、数据存储

公司需要存储将通过大数据架构处理的数据。一般而言,数据将存储在数据湖中,这是一个可以轻松扩展的大型非结构化数据库。

4、批处理和实时处理的组合

公司需要同时处理实时数据和静态数据,因而应在大数据架构中内置批量和实时处理的组合。这是由于能够应用批处理有效地处理大批量数据,而实时数据需要立刻处理才能够带来价值。批处理涉及到长期运转的作业,用于筛选、聚合和准备数据开展分析。

5、分析数据存储

准备好要分析的数据后,需要将它们放到一个位置,便于对整个数据集开展分析。分析数据储存的必要性在于,公司的全部数据都聚集在一个位置,因而其分析将是全面的,而且针对分析而非事务进行了优化。这可能采用基于云计算的数据仓库或关系数据库的形式,具体取决于公司的需求。

6、分析或报告工具

在摄入和处理各类数据源之后,公司需要包含一个分析数据的工具。一般而言,公司将使用BI(商业智能)工具来完成这项工作,而且或者需要数据科学家来探索数据。

关于大数据系统架构包含内容涉及哪些,就给大家分享到这里了,希望对大家能有所帮助,作为新时代大学生,我们只有不算提升自我技能,充实自我,才是最为正确的选择。

Ⅳ 大数据平台架构如何进行 包括哪些方面

【导语】大数据平台将互联网使用和大数据产品整合起来,将实时数据和离线数据打通,使数据能够实现更大规模的相关核算,挖掘出数据更大的价值,然后实现数据驱动事务,那么大数据平台架构如何进行?包括哪些方面呢?

1、事务使用:

其实指的是数据收集,你经过什么样的方法收集到数据。互联网收集数据相对简略,经过网页、App就能够收集到数据,比方许多银行现在都有自己的App。

更深层次的还能收集到用户的行为数据,能够切分出来许多维度,做很细的剖析。但是对于涉及到线下的行业,数据收集就需要借助各类的事务体系去完成。

2、数据集成:

指的其实是ETL,指的是用户从数据源抽取出所需的数据,经过数据清洗,终究依照预先定义好的数据仓库模型,将数据加载到数据仓库中去。而这儿的Kettle仅仅ETL的其中一种。

3、数据存储:

指的便是数据仓库的建设了,简略来说能够分为事务数据层(DW)、指标层、维度层、汇总层(DWA)。

4、数据同享层:

表明在数据仓库与事务体系间提供数据同享服务。Web Service和Web
API,代表的是一种数据间的衔接方法,还有一些其他衔接方法,能够依照自己的情况来确定。

5、数据剖析层:

剖析函数就相对比较容易理解了,便是各种数学函数,比方K均值剖析、聚类、RMF模型等等。

6、数据展现:

结果以什么样的方式呈现,其实便是数据可视化。这儿建议用敏捷BI,和传统BI不同的是,它能经过简略的拖拽就生成报表,学习成本较低。

7、数据访问:

这个就比较简略了,看你是经过什么样的方法去查看这些数据,图中示例的是因为B/S架构,终究的可视化结果是经过浏览器访问的。

关于大数据平台架构内容,就给大家介绍到这里了,不知道大家是不是有所了解呢,未来,大数据对社会发展的重大影响必将会决定未来的发展趋势,所以有想法考生要抓紧时间学起来了。

阅读全文

与大数据架构有哪些应该如何理解相关的资料

热点内容
什么牌子的网络盒子免费好用 浏览:483
win10储存的系统文件40g 浏览:549
什么样的app能看图书思维风暴 浏览:58
linux恢复删除的文件夹 浏览:740
吕布新版本用什么铭文 浏览:58
网络已注册信息 浏览:124
手机qq找不到电脑发的文件 浏览:278
苹果7登陆密码忘记了怎么办啊 浏览:635
腾讯手机管家文件 浏览:918
大数据架构有哪些应该如何理解 浏览:343
编程需要什么条件的电脑 浏览:725
你和她在哪个app认识的 浏览:923
mac怎么解压rar格式的文件免费 浏览:693
崂山区网站定制一般多少钱 浏览:920
什么孕妇app好 浏览:286
网上邻居的文件删除在哪里 浏览:59
电脑编程人员要什么样的性格 浏览:946
加减乘除计算程序 浏览:441
javaenum单利 浏览:168
qq群信用等级怎么查 浏览:253

友情链接