导航:首页 > 数据分析 > 大数据中的数据标准包括哪些

大数据中的数据标准包括哪些

发布时间:2024-10-26 03:27:06

大数据是什么

大数据是什么意思呢?
如果从字面意思来看,大数据指的是巨量数据。那么可能有人会问,多大量级的数据才叫大数据?不同的机构或学者有不同的理解,难以有一个非常定量的定义,只能说,大数据的计量单位已经越过TB级别发展到PB、EB、ZB、YB甚至BB级别。
最早提出“大数据”这一概念的 是全球知名咨询公司麦肯锡,它是这样定义大数据的:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型以及价值密度低四大特征。
研究机构Gartner是这样定义大数据的:“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流转优化能力来适应海量、高增长率和多样化的信息资产。若从技术角度来看,大数据的战略意义不在于掌握庞大的数据,而在于对这些含有意义的数据进行专业化处理,换言之,如果把大数据比作一种产业,那么这种产业盈利的关键在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

㈡ 什么是大数据,看完这篇就明白了

什么是大数据

如果从字面上解释的话,大家很容易想到的可能就是大量的数据,海量的数据。这样的解释确实通俗易懂,但如果用专业知识来描述的话,就是指数据集的大小远远超过了现有普通数据库软件和工具的处理能力的数据。

大数据的特点

海量化

这里指的数据量是从TB到PB级别。在这里顺带给大家科普一下这是什么概念。

MB,全称MByte,计算机中的一种储存单位,含义是“兆字节”。

1MB可储存1024×1024=1048576字节(Byte)。

字节(Byte)是存储容量基本单位,1字节(1Byte)由8个二进制位组成。

位(bit)是计算机存储信息的最小单位,二进制的一个“0”或一个“1”叫一位。

通俗来讲,1MB约等于一张网络通用图片(非高清)的大小。

1GB=1024MB,约等于下载一部电影(非高清)的大小。

1TB=1024GB,约等于一个固态硬盘的容量大小,能存放一个不间断的监控摄像头录像(200MB/个)长达半年左右。

1PB=1024TB,容量相当大,应用于大数据存储设备,如服务器等。

1EB=1024PB,目前还没有单个存储器达到这个容量。

多样化

大数据含有的数据类型复杂,超过80%的数据是非结构化的。而数据类型又分成结构化数据,非结构化数据,半结构化数据。这里再对三种数据类型做一个分类科普。

①结构化数据

结构化的数据是指可以使用关系型数据库(例如:MySQL,Oracle,DB2)表示和存储,表现为二维形式的数据。一般特点是:数据以行为单位,一行数据表示一个实体的信息,每一行数据的属性是相同的。所以,结构化的数据的存储和排列是很有规律的,这对查询和修改等操作很有帮助。

但是,它的扩展性不好。比如,如果字段不固定,利用关系型数据库也是比较困难的,有人会说,需要的时候加个字段就可以了,这样的方法也不是不可以,但在实际运用中每次都进行反复的表结构变更是非常痛苦的,这也容易导致后台接口从数据库取数据出错。你也可以预先设定大量的预备字段,但这样的话,时间一长很容易弄不清除字段和数据的对应状态,即哪个字段保存有哪些数据。

②半结构化数据

半结构化数据是结构化数据的一种形式,它并不符合关系型数据库或其他数据表的形式关联起来的数据模型结构,但包含相关标记,用来分隔语义元素以及对记录和字段进行分层。因此,它也被称为自描述的结构。半结构化数据,属于同一类实体可以有不同的属性,即使他们被组合在一起,这些属性的顺序并不重要。常见的半结构数据有XML和JSON。

③非结构化数据

非结构化数据是数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。包括所有格式的办公文档、文本、图片、各类报表、图像和音频/视频信息等等。非结构化数据其格式非常多样,标准也是多样性的,而且在技术上非结构化信息比结构化信息更难标准化和理解。所以存储、检索、发布以及利用需要更加智能化的IT技术,比如海量存储、智能检索、知识挖掘、内容保护、信息的增值开发利用等。

快速化

随着物联网、电子商务、社会化网络的快速发展,全球大数据储量迅猛增长,成为大数据产业发展的基础。根据国际数据公司(IDC)的监测数据显示,2013年全球大数据储量为4.3ZB(相当于47.24亿个1TB容量的移动硬盘),2014年和2015年全球大数据储量分别为6.6ZB和8.6ZB。近几年全球大数据储量的增速每年都保持在40%,2016年甚至达到了87.21%的增长率。2016年和2017年全球大数据储量分别为16.1ZB和21.6ZB,2018年全球大数据储量达到33.0ZB。预测未来几年,全球大数据储量规模也都会保持40%左右的增长率。在数据储量不断增长和应用驱动创新的推动下,大数据产业将会不断丰富商业模式,构建出多层多样的市场格局,具有广阔的发展空间。

核心价值

大数据的核心价值,从业务角度出发,主要有如下的3点:

a.数据辅助决策:为企业提供基础的数据统计报表分析服务。分析师能够轻易获取数据产出分析报告指导产品和运营,产品经理能够通过统计数据完善产品功能和改善用户体验,运营人员可以通过数据发现运营问题并确定运营的策略和方向,管理层可以通过数据掌握公司业务运营状况,从而进行一些战略决策;

b.数据驱动业务:通过数据产品、数据挖掘模型实现企业产品和运营的智能化,从而极大的提高企业的整体效能产出。最常见的应用领域有基于个性化推荐技术的精准营销服务、广告服务、基于模型算法的风控反欺诈服务征信服务,等等。

c.数据对外变现:通过对数据进行精心的包装,对外提供数据服务,从而获得现金收入。市面上比较常见有各大数据公司利用自己掌握的大数据,提供风控查询、验证、反欺诈服务,提供导客、导流、精准营销服务,提供数据开放平台服务,等等。

大数据能做什么?

1、海量数据快速查询(离线)

能够在海量数据的基础上进行快速计算,这里的“快速”是与传统计算方案对比。海量数据背景下,使用传统方案计算可能需要一星期时间。使用大数据 技术计算只需要30分钟。

2.海量数据实时计算(实时)

在海量数据的背景下,对于实时生成的最新数据,需要立刻、马上传递到大数据环境,并立刻、马上进行相关业务指标的分析,并把分析完的结果立刻、马上展示给用户或者领导。

3.海量数据的存储(数据量大,单个大文件

大数据能够存储海量数据,大数据时代数据量巨大,1TB=1024*1G 约26万首歌(一首歌4M),1PB=1024 * 1024 * 1G约2.68亿首歌(一首歌4M)

大数据能够存储单个大文件。目前市面上最大的单个硬盘大小约为10T左右。若有一个文件20T,将 无法存储。大数据可以存储单个20T文件,甚至更大。

4.数据挖掘(挖掘以前没有发现的有价值的数据)

挖掘前所未有的新的价值点。原始企业内数据无法计算出的结果,使用大数据能够计算出。

挖掘(算法)有价值的数据。在海量数据背景下,使用数据挖掘算法,挖掘有价值的指标(不使用这些算法无法算出)

大数据行业的应用?

1.常见领域

2.智慧城市

3.电信大数据

4.电商大数据

大数据行业前景(国家政策)?

2014年7月23日,国务院常务会议审议通过《企业信息公示暂行条例(草案)》

2015年6月19日,国家主席、总理同时就“大数据”发表意见:《国务院办公厅关于运用大数据加强对市场主体服务和监管的若干意见》

2015年8月31日,国务院印发《促进大数据发展行动纲要》。国发〔2015〕50号

2016年12月18日,工业和信息化部关于印发《大数据产业发展规划》

2018年1月23日。中央全面深化改革领导小组会议审议通过了《科学数据管理办法》

2018年7月1日,国务院办公厅印发《关于运用大数据加强对市场主体服务和监管的若干意见》

2019年政府工作报告中总理指出“深化大数据、人工智能等研发应用,培育新一代信息技术、高端装备、生物医药、新能源汽车、新材料等新兴产业集群,壮大数字经济。”

总结

我国著名的电商之父,阿里巴巴创始人马云先生曾说过,未来10年,乃至20年,将是人工智能的时代,大数据的时代。对于现在正在学习大数据的我们来说,未来对于我们更是充满了各种机遇与挑战。

python学习网,大量的免费python视频教程,欢迎在线学习!

㈢ 通常提到的大数据3v标准定义是指

大数据传统的3V基本特征是指Volume、Variety和Velocity。

1、海量数据(Volume)。截止到现在,人类所生产出来的印刷材料的数据总量为200PB,而整个人类历史上所有的数据总量大约是在5EP(1EB=210PB)。

2、数据类型繁多(Variety)。相对以前存储方便的的文本为主的数据化结构,非数据化结构将的总量会越来越多,其中包括了很多的网络日志,视频,音频,图片等一些信息,这些类型多元化对于数据的处理能力又提高了新的要求。

3、处理速度快(Velocity)。处理速度是区别大数据和传统数据最特征。预计到2020年,全球数据使用量将达到35.2ZB。

大数据结构:

大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。

据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。

大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。

㈣ 干货!一文详解数据标准管理

中国人民银行、市场监管总局、银保监会、证监会联手发布的《金融标准化“十四五”发展规划》强调了完善金融大数据标准体系的重要性,包括数据采集、处理、分析等技术标准,以及数据质量、安全、共享等方面的规定。数据标准被视为金融监管和业务运行的基础,它在确保数据一致性与准确性上扮演关键角色。

对于各行各业,数据标准同样至关重要。它作为业务和技术沟通的通用语言,通过定义业务实体、关系和规则,增强了业务和技术的一致性,确保数据反映真实业务,支持精细化管理。在实践中,企业构建数据标准的过程中,可能面临推进难、落地复杂等问题。

为了高效管理数据标准,企业应关注以下几个关键点:首先,理解数据标准作为沟通工具的含义,它是一套包括管理规范、流程和技术工具的体系,确保企业内外数据一致、准确;其次,明确数据标准的制定者,可能涉及决策层、管理层和执行层的协作,数据标准决策层负责全局规划,管理层负责协调实施,执行层负责具体操作;再者,制定过程中需经历规划、编制和发布三个步骤,涵盖数据调研、企业数据盘点和框架定义,以及数据元属性确定;执行阶段则强调共识建立、落地实施和效果跟踪。

最后,维护数据标准是持续的过程,涉及需求收集、版本管理和定期审查,确保标准的实用性与适应性。成功的企业如某银行,通过数据标准管理平台显著提升了数据质量,推动了业务运营效率和数据分析应用。

总结来说,数据标准是数字化转型的基石,企业需通过建立和维护一套完整的数据标准体系,以实现数据的有效治理,驱动业务发展和数字化进程的深化。

阅读全文

与大数据中的数据标准包括哪些相关的资料

热点内容
ps入门必备文件 浏览:348
以前的相亲网站怎么没有了 浏览:15
苹果6耳机听歌有滋滋声 浏览:768
怎么彻底删除linux文件 浏览:379
编程中字体的颜色是什么意思 浏览:534
网站关键词多少个字符 浏览:917
汇川am系列用什么编程 浏览:41
笔记本win10我的电脑在哪里打开摄像头 浏览:827
医院单位基本工资去哪个app查询 浏览:18
css源码应该用什么文件 浏览:915
编程ts是什么意思呢 浏览:509
c盘cad占用空间的文件 浏览:89
不锈钢大小头模具如何编程 浏览:972
什么格式的配置文件比较主流 浏览:984
增加目录word 浏览:5
提取不相邻两列数据如何做图表 浏览:45
r9s支持的网络制式 浏览:633
什么是提交事务的编程 浏览:237
win10打字卡住 浏览:774
linux普通用户关机 浏览:114

友情链接