⑴ 什么是数据科学家
数据科学家是指能采用科学方法、运用数据挖掘工具对复杂多量的数字、符号、文字、网址、音频或视频等信息进行数字化重现与认识,并能寻找新的数据洞察的工程师或专家(不同于统计学家或分析师)。
一个优秀的数据科学家需要具备的素质有:
懂数据采集、懂数学算法、懂数学软件、懂数据分析、懂预测分析、懂市场应用、懂决策分析等。
⑵ 数据科学家需要具备什么能力
数学功底:微积分是严格要掌握的。不一定要掌握多元微积分,但一元微积分是必须要熟练掌握并使用的。另外线性代数一定要精通,特别是矩阵的运算、向量空间、秩等概念。当前机器学习框架中很多计算都需要用到矩阵的乘法、转置或是求逆。虽然很多框架都直接提供了这样的工具,但我们至少要了解内部的原型原理,比如如何高效判断一个矩阵是否存在逆矩阵并如何计算等。
数理统计:概率论和各种统计学方法要做到基本掌握,比如贝叶斯概率如何计算?概率分布是怎么回事?虽不要求精通,但对相关背景和术语一定要了解。
交互式数据分析框架:这里并不是指SQL或数据库查询,而是像Apache Hive或Apache Kylin这样的分析交互框架。开源社区中有很多这样类似的框架,可以使用传统的数据分析方式对大数据进行数据分析或数据挖掘。笔者有过使用经验的是Hive和Kylin。不过Hive特别是Hive1是基于MapRece的,性能并非特别出色,而Kylin采用数据立方体的概念结合星型模型,可以做到很低延时的分析速度,况且Kylin是第一个研发团队主力是中国人的Apache孵化项目,因此日益受到广泛的关注。
机器学习框架:机器学习当前真是火爆宇宙了,人人都提机器学习和AI,但笔者一直认为机器学习恰似几年前的云计算一样,目前虽然火爆,但没有实际的落地项目,可能还需要几年的时间才能逐渐成熟。不过在现在就开始储备机器学习的知识总是没有坏处的。说到机器学习的框架,大家耳熟能详的有很多种, 信手拈来的就包括TensorFlow、Caffe8、Keras9、CNTK10、Torch711等,其中又以TensorFlow领衔。笔者当前建议大家选取其中的一个框架进行学习,但以我对这些框架的了解,这些框架大多很方便地封装了各种机器学习算法提供给用户使用,但对于底层算法的了解其实并没有太多可学习之处。因此笔者还是建议可以从机器学习算法的原理来进行学习。
⑶ 数据科学家是什么
数据科学家是数据科学的编程与实现,数据科学理论和数据的商业影响之间的桥梁,年薪一般在60W以上。理论基础:统计、大数据、数据挖掘、机器学习和商业智能软件要求:必要Excel、SQL;可选R、Python、SAS、Hadoop等业务分析能力带领数据团队,能够将企业的数据资产进行有效的整合和管理,建立内外部数据的连接;熟悉数据仓库的构造理论,可以指导ETL工程师业务工作;可以面向数据挖掘运用主题构造数据集市;在人和数据之间建立有机联系,面向用户数据创造不同特性的产品和系统;具有数据规划的能力。结果展现能力带领数据团队,能够将企业的数据资产进行有效的整合和管理,建立内外部数据的连接;熟悉数据仓库的构造理论,可以指导ETL工程师业务工作;可以面向数据挖掘运用主题构造数据集市;在人和数据之间建立有机联系,面向用户数据创造不同特性的产品和系统;具有数据规划的能力。