导航:首页 > 数据分析 > 数据可视化工程师需要哪些技术

数据可视化工程师需要哪些技术

发布时间:2024-09-09 12:28:54

A. 数据可视化的交互技术有哪些

一、常用的数据可视化技术
数据可视化技术在应用过程中,多数非技术驱动,而是目标驱动。如图显示了目前业界广泛使用的根据目标分类的数据可视化方法,数据可视化目标抽象为对比、分布、组成以及关系。
按目标分类的常用数据可视化方法
1、对比。比较不同元素之间或不同时刻之间的值。
2、分布。查看数据分布特征,是数据可视化最为常用的场景之一。
3、组成。查看数据静态或动态组成。
4、关系。查看变量之间的相关性,这常常用于结合统计学相关性分析方法,通过视觉结合使用者专业知识与场景需求判断多个因素之间的影响关系。
大规模数据可视化一般认为是处理数据规模达到TB或PB级别的数据。经过数十年的发展,大规模数据可视化经过了大量研究,重点介绍其中的并行可视化和原位(in situ)可视化。
(1)并行可视化
并行可视化通常包括3种并行处理模式,分别是任务并行、流水线并行、数据并行。
任务并行将可视化过程分为独立的子任务,同时运行的子任务之间不存在数据依赖。
流水线并行采用流式读取数据片段,将可视化过程分为多个阶段,计算机并行执行各个阶段加速处理过程。
数据并行是一种“单程序多数据”方式,将数据划分为多个子集,然后以子集为粒度并行执行程序处理不同的数据子集。
(2)原位可视化
数值模拟过程中生成可视化,用于缓解大规模数值模拟输出瓶颈。根据输出不同,原位可视化分为图像、分布、压缩与特征。
输出为图像的原位可视化,在数值模拟过程中,将数据映射为可视化,并保存为图像。
输出为分布数据的原位可视化,根据使用者定义的统计指标,在数值模拟过程中计算统计指标并保存,后续进行统计数据可视化;
输出为压缩数据的原位可视化采用压缩算法降低数值模拟数据输出规模,将压缩数据作为后续可视化处理的输入;
输出为特征的原位可视化采用特征提取方法,在数值模拟过程中提取特征并保存,将特征数据作为后续可视化处理的输入。
(3)时序数据可视化
时序数据可视化是帮助人类通过数据的视角观察过去,预测未来,例如建立预测模型,进行预测性分析和用户行为分析。
面积图可显示某时间段内量化数值的变化和发展,最常用来显示趋势。气泡图可以将其中一条轴的变量设置为时间,或者把数据变量随时间的变化制成动画来显示。蜡烛图通常用作交易工具
甘特图通常用作项目管理的组织工具,热图通过色彩变化来显示数据,直方图适合用来显示在连续间隔或特定时间段内的数据分布。
折线图用于在连续间隔或时间跨度上显示定量数值,最常用来显示趋势和关系。南丁格尔玫瑰图绘制于极坐标系之上,适用于周期性时序数据。OHLC图通常用作交易工具。
螺旋图沿阿基米德螺旋线绘制基于时间的数据。堆叠式面积图的原理与简单面积图相同,但它能同时显示多个数据系列。量化波形图可显示不同类别的数据随着时间的变化。
另外,具有空间位置信息的时序数据,常常将上述可视化方法地图结合,例如轨迹图。

B. 学习大数据工程经历哪些阶段

第1阶段:掌握Java Web数据可视化


你需要掌握Java服务器端技术,前端可视化技术,数据库技术,这个阶段主要是储备大数据的前置技能,当然你已经可以从事数据可视化工程师的工作了,但还不能算真正入门大数据。


第2阶段:学会 Hadoop 核胡册心及生态圈技术栈


这凯败部分涵盖的技术比较多,像 HDFS 分布式存储、MapRece、Zookeeper、Kafka等你都得掌握,掌握后可以去从事 ETL 工程师等一些大数据的岗位,但是知识储备还不够完整。


第3阶段:搞定计算引擎及分析算法


计算引擎我建议是 Spark 和 Flink 都能熟练使用,虽然现在一些企业还在用 Spark,但未来 Flink 一定会成为主流。学到这,你已经具备相对完整的大数据技能,能从事一些高薪的盯做颤岗位了,像大数据研发工程师、推荐系统工程师、用户画像工程师等。

C. 大数据可视化工程师有哪些要求

数据可视化的本质就是视觉对话。数据可视化将技术与艺术完美结合,借助图形化的手段,清晰有效地传达与沟通信息。

可视化的意义是帮助人更好的分析数据,信息的质量很大程度上依赖于其表达方式。对数字罗列所组成的数据中所包含的意义进行分析,使分析结果可视化。

数据可视化的主要作用,在于通过图形和色彩将关键数据和特征直观地传达出来,从而实现对于相当稀疏而又复杂的数据集的深入洞察。而单纯说"数据呈现"并不确切,因为数据可视化并非无差异地涵盖所有数据,可视化的过程本身就已经加入了制作人的对问题的思考、理解、甚至是一些假设,而数据可视化则是通过一目了然的方式,帮助制作人获得客观数据层面的引导或者验证。

大数据可视化工程师的岗位要求如下:

第一,需要是统计、应用数学、计算机科学等专业的本科及以上学历。

第二,需要有实习经验或者参加过大数据比赛者的经验。

第三,要熟练掌握至少一种大数据工具,PYTHON/R或其他数据挖掘和数据展示软件。

第四,要有良好的编写数据分析报告的能力,对图形效果的可视化,科学化,美观化的具备一定能力。

关于大数据可视化工程师有哪些要求,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

阅读全文

与数据可视化工程师需要哪些技术相关的资料

热点内容
如何制作虚拟货币app 浏览:303
ug50能通过补丁升级到高版本吗 浏览:766
dxf文件cad打不开的原因 浏览:525
2012怎么改域用户密码 浏览:550
dtv网络电视手机版下载 浏览:954
mfc100u放在哪个文件夹 浏览:359
javaweb插件 浏览:58
pto密码忘记 浏览:567
logo竞赛教程 浏览:481
贵阳去哪里学编程比较好 浏览:132
java将string转为json 浏览:291
ppt2013制作exe文件 浏览:80
linux文件只读不能复制 浏览:597
开关代码 浏览:91
word绘图板 浏览:359
苹果minecraftpe注册 浏览:775
ps怎么存储文件卡 浏览:728
微信清除缓存图片恢复 浏览:305
安卓app会闪退怎么解决 浏览:429
哪些app背单词是免费的 浏览:889

友情链接