『壹』 16种常用的数据分析方法汇总
一、描述统计
描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。
2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。
二、假设检验
1、参数检验
参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验 。
1)U验 使用条件:当样本含量n较大时,样本值符合正态分布
2)T检验 使用条件:当样本含量n较小时,样本值符合正态分布
A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;
B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;
C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。
2、非参数检验
非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。
A 虽然是连续数据,但总体分布形态未知或者非正态;
B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;
主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
三、信度分析
检査测量的可信度,例如调查问卷的真实性。
分类:
1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度
2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。
四、列联表分析
用于分析离散变量或定型变量之间是否存在相关。
对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。
列联表分析还包括配对计数资料的卡方检验、行列均为顺序变量的相关检验。
五、相关分析
研究现象之间是否存在某种依存关系,对具体有依存关系的现象探讨相关方向及相关程度。
1、单相关: 两个因素之间的相关关系叫单相关,即研究时只涉及一个自变量和一个因变量;
2、复相关 :三个或三个以上因素的相关关系叫复相关,即研究时涉及两个或两个以上的自变量和因变量相关;
3、偏相关:在某一现象与多种现象相关的场合,当假定其他变量不变时,其中两个变量之间的相关关系称为偏相关。
六、方差分析
使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。
分类
1、单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系
2、多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系
3、多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系
4、协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,使之影响了分祈结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法,
七、回归分析
分类:
1、一元线性回归分析:只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布。
2、多元线性回归分析
使用条件:分析多个自变量与因变量Y的关系,X与Y都必须是连续型变量,因变量y或其残差必须服从正态分布 。
1)变呈筛选方式:选择最优回归方程的变里筛选法包括全横型法(CP法)、逐步回归法,向前引入法和向后剔除法
2)横型诊断方法:
A 残差检验: 观测值与估计值的差值要艰从正态分布
B 强影响点判断:寻找方式一般分为标准误差法、Mahalanobis距离法
C 共线性诊断:
诊断方式:容忍度、方差扩大因子法(又称膨胀系数VIF)、特征根判定法、条件指针CI、方差比例
处理方法:增加样本容量或选取另外的回归如主成分回归、岭回归等
3、Logistic回归分析
线性回归模型要求因变量是连续的正态分布变里,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况
分类:
Logistic回归模型有条件与非条件之分,条件Logistic回归模型和非条件Logistic回归模型的区别在于参数的估计是否用到了条件概率。
4、其他回归方法 非线性回归、有序回归、Probit回归、加权回归等
八、聚类分析
样本个体或指标变量按其具有的特性进行分类,寻找合理的度量事物相似性的统计量。
1、性质分类:
Q型聚类分析:对样本进行分类处理,又称样本聚类分祈 使用距离系数作为统计量衡量相似度,如欧式距离、极端距离、绝对距离等
R型聚类分析:对指标进行分类处理,又称指标聚类分析 使用相似系数作为统计量衡量相似度,相关系数、列联系数等
2、方法分类:
1)系统聚类法: 适用于小样本的样本聚类或指标聚类,一般用系统聚类法来聚类指标,又称分层聚类
2)逐步聚类法 :适用于大样本的样本聚类
3)其他聚类法 :两步聚类、K均值聚类等
九、判别分析
1、判别分析:根据已掌握的一批分类明确的样品建立判别函数,使产生错判的事例最少,进而对给定的一个新样品,判断它来自哪个总体
2、与聚类分析区别
1)聚类分析可以对样本逬行分类,也可以对指标进行分类;而判别分析只能对样本
2)聚类分析事先不知道事物的类别,也不知道分几类;而判别分析必须事先知道事物的类别,也知道分几类
3)聚类分析不需要分类的历史资料,而直接对样本进行分类;而判别分析需要分类历史资料去建立判别函数,然后才能对样本进行分类
3、进行分类 :
1)Fisher判别分析法 :
以距离为判别准则来分类,即样本与哪个类的距离最短就分到哪一类, 适用于两类判别;
以概率为判别准则来分类,即样本属于哪一类的概率最大就分到哪一类,适用于
适用于多类判别。
2)BAYES判别分析法 :
BAYES判别分析法比FISHER判别分析法更加完善和先进,它不仅能解决多类判别分析,而且分析时考虑了数据的分布状态,所以一般较多使用;
十、主成分分析
将彼此梠关的一组指标变适转化为彼此独立的一组新的指标变量,并用其中较少的几个新指标变量就能综合反应原多个指标变量中所包含的主要信息 。
十一、因子分析
一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法
与主成分分析比较:
相同:都能够起到済理多个原始变量内在结构关系的作用
不同:主成分分析重在综合原始变适的信息.而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法
用途:
1)减少分析变量个数
2)通过对变量间相关关系探测,将原始变量进行分类
十二、时间序列分析
动态数据处理的统计方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题;时间序列通常由4种要素组成:趋势、季节变动、循环波动和不规则波动。
主要方法:移动平均滤波与指数平滑法、ARIMA横型、量ARIMA横型、ARIMAX模型、向呈自回归横型、ARCH族模型
十三、生存分析
用来研究生存时间的分布规律以及生存时间和相关因索之间关系的一种统计分析方法
1、包含内容:
1)描述生存过程,即研究生存时间的分布规律
2)比较生存过程,即研究两组或多组生存时间的分布规律,并进行比较
3)分析危险因素,即研究危险因素对生存过程的影响
4)建立数学模型,即将生存时间与相关危险因素的依存关系用一个数学式子表示出来。
2、方法:
1)统计描述:包括求生存时间的分位数、中数生存期、平均数、生存函数的估计、判断生存时间的图示法,不对所分析的数据作出任何统计推断结论
2)非参数检验:检验分组变量各水平所对应的生存曲线是否一致,对生存时间的分布没有要求,并且检验危险因素对生存时间的影响。
A 乘积极限法(PL法)
B 寿命表法(LT法)
3)半参数横型回归分析:在特定的假设之下,建立生存时间随多个危险因素变化的回归方程,这种方法的代表是Cox比例风险回归分析法
4)参数模型回归分析:已知生存时间服从特定的参数横型时,拟合相应的参数模型,更准确地分析确定变量之间的变化规律
十四、典型相关分析
相关分析一般分析两个变里之间的关系,而典型相关分析是分析两组变里(如3个学术能力指标与5个在校成绩表现指标)之间相关性的一种统计分析方法。
典型相关分析的基本思想和主成分分析的基本思想相似,它将一组变量与另一组变量之间单变量的多重线性相关性研究转化为对少数几对综合变量之间的简单线性相关性的研究,并且这少数几对变量所包含的线性相关性的信息几乎覆盖了原变量组所包含的全部相应信息。
十五、R0C分析
R0C曲线是根据一系列不同的二分类方式(分界值或决定阈).以真阳性率(灵敏度)为纵坐标,假阳性率(1-特异度)为横坐标绘制的曲线
用途:
1、R0C曲线能很容易地査出任意界限值时的对疾病的识别能力
用途
2、选择最佳的诊断界限值。R0C曲线越靠近左上角,试验的准确性就越高;
3、两种或两种以上不同诊断试验对疾病识别能力的比较,一股用R0C曲线下面积反映诊断系统的准确性。
十六、其他分析方法
多重响应分析、距离分祈、项目分祈、对应分祈、决策树分析、神经网络、系统方程、蒙特卡洛模拟等。
『贰』 生物统计统计模型
在统计分析的世界中,数学模型是支撑各种方法的基石。在生物科学的研究中,几种特殊的统计模型尤为关键。首先,我们有"捉放捉"模型,它是一种用于估算总体个体数量的强大工具。这个模型通过对个体的捕获和释放过程进行建模,为我们提供了估计总体规模的有效途径。
接着,对数线性模型是另一个重要的分析工具,特别是在处理多维列联表时,即那些根据多个指标分类的计数数据。它通过构建对数函数,使得我们能够深入理解各指标之间的复杂关系,从而进行有效的数据分析。
Logit模型则更为灵活,它不仅能够处理多个混杂因素,而且还能适应定量混杂变量和危险因子。当所有指标都是定性时,Logit模型就简化为了对数线性模型的一个特例,这使得它在处理分类数据时具有独特的优势。通过Logit模型,科学家们能够精细地控制和分析这些因素对结果的影响,提高了研究的精确度。
生物统计(shengwu tongji,biostatistics,biometry,biometrics)含义 应用于中的数理统计方法。即用数理统计的原理和方法,分析和解释生物界的种种现象和数据资料,以求把握其本质和规律性。
『叁』 大数据经典算法解析(1)一C4.5算法
姓名:崔升 学号:14020120005
【嵌牛导读】:
C4.5作为一种经典的处理大数据的算法,是我们在学习互联网大数据时不得不去了解的一种常用算法
【嵌牛鼻子】:经典大数据算法之C4.5简单介绍
【嵌牛提问】:C4.5是一种怎么的算法,其决策机制靠什么实现?
【嵌牛正文】:
决策树模型:
决策树是一种通过对特征属性的分类对样本进行分类的树形结构,包括有向边与三类节点:
根节点(root node),表示第一个特征属性,只有出边没有入边;
内部节点(internal node),表示特征属性,有一条入边至少两条出边
叶子节点(leaf node),表示类别,只有一条入边没有出边。
上图给出了(二叉)决策树的示例。决策树具有以下特点:
对于二叉决策树而言,可以看作是if-then规则集合,由决策树的根节点到叶子节点对应于一条分类规则;
分类规则是 互斥并且完备 的,所谓 互斥 即每一条样本记录不会同时匹配上两条分类规则,所谓 完备 即每条样本记录都在决策树中都能匹配上一条规则。
分类的本质是对特征空间的划分,如下图所示,
决策树学习:
决策树学习的本质是从训练数据集中归纳出一组分类规则[2]。但随着分裂属性次序的不同,所得到的决策树也会不同。如何得到一棵决策树既对训练数据有较好的拟合,又对未知数据有很好的预测呢?
首先,我们要解决两个问题:
如何选择较优的特征属性进行分裂?每一次特征属性的分裂,相当于对训练数据集进行再划分,对应于一次决策树的生长。ID3算法定义了目标函数来进行特征选择。
什么时候应该停止分裂?有两种自然情况应该停止分裂,一是该节点对应的所有样本记录均属于同一类别,二是该节点对应的所有样本的特征属性值均相等。但除此之外,是不是还应该其他情况停止分裂呢?
2. 决策树算法
特征选择
特征选择指选择最大化所定义目标函数的特征。下面给出如下三种特征(Gender, Car Type, Customer ID)分裂的例子:
图中有两类类别(C0, C1),C0: 6是对C0类别的计数。直观上,应选择Car Type特征进行分裂,因为其类别的分布概率具有更大的倾斜程度,类别不确定程度更小。
为了衡量类别分布概率的倾斜程度,定义决策树节点tt的不纯度(impurity),其满足:不纯度越小,则类别的分布概率越倾斜;下面给出不纯度的的三种度量:
其中,p(ck|t)p(ck|t)表示对于决策树节点tt类别ckck的概率。这三种不纯度的度量是等价的,在等概率分布是达到最大值。
为了判断分裂前后节点不纯度的变化情况,目标函数定义为信息增益(information gain):
I(⋅)I(⋅)对应于决策树节点的不纯度,parentparent表示分裂前的父节点,NN表示父节点所包含的样本记录数,aiai表示父节点分裂后的某子节点,N(ai)N(ai)为其计数,nn为分裂后的子节点数。
特别地,ID3算法选取 熵值 作为不纯度I(⋅)I(⋅)的度量,则
cc指父节点对应所有样本记录的类别;AA表示选择的特征属性,即aiai的集合。那么,决策树学习中的信息增益ΔΔ等价于训练数据集中 类与特征的互信息 ,表示由于得知特征AA的信息训练数据集cc不确定性减少的程度。
在特征分裂后,有些子节点的记录数可能偏少,以至于影响分类结果。为了解决这个问题,CART算法提出了只进行特征的二元分裂,即决策树是一棵二叉树;C4.5算法改进分裂目标函数,用信息增益比(information gain ratio)来选择特征:
因而,特征选择的过程等同于计算每个特征的信息增益,选择最大信息增益的特征进行分裂。此即回答前面所提出的第一个问题(选择较优特征)。ID3算法设定一阈值,当最大信息增益小于阈值时,认为没有找到有较优分类能力的特征,没有往下继续分裂的必要。根据最大表决原则,将最多计数的类别作为此叶子节点。即回答前面所提出的第二个问题(停止分裂条件)。
决策树生成:
ID3算法的核心是根据信息增益最大的准则,递归地构造决策树;算法流程如下:
如果节点满足停止分裂条件(所有记录属同一类别 or 最大信息增益小于阈值),将其置为叶子节点;
选择信息增益最大的特征进行分裂;
重复步骤1-2,直至分类完成。
C4.5算法流程与ID3相类似,只不过将信息增益改为 信息增益比 。
3. 决策树剪枝
过拟合
生成的决策树对训练数据会有很好的分类效果,却可能对未知数据的预测不准确,即决策树模型发生过拟合(overfitting)——训练误差(training error)很小、泛化误差(generalization error,亦可看作为test error)较大。下图给出训练误差、测试误差(test error)随决策树节点数的变化情况:
可以观察到,当节点数较小时,训练误差与测试误差均较大,即发生了欠拟合(underfitting)。当节点数较大时,训练误差较小,测试误差却很大,即发生了过拟合。只有当节点数适中是,训练误差居中,测试误差较小;对训练数据有较好的拟合,同时对未知数据有很好的分类准确率。
发生过拟合的根本原因是分类模型过于复杂,可能的原因如下:
训练数据集中有噪音样本点,对训练数据拟合的同时也对噪音进行拟合,从而影响了分类的效果;
决策树的叶子节点中缺乏有分类价值的样本记录,也就是说此叶子节点应被剪掉。
剪枝策略
为了解决过拟合,C4.5通过剪枝以减少模型的复杂度。[2]中提出一种简单剪枝策略,通过极小化决策树的整体损失函数(loss function)或代价函数(cost function)来实现,决策树TT的损失函数为:
其中,C(T)C(T)表示决策树的训练误差,αα为调节参数,|T||T|为模型的复杂度。当模型越复杂时,训练的误差就越小。上述定义的损失正好做了两者之间的权衡。
如果剪枝后损失函数减少了,即说明这是有效剪枝。具体剪枝算法可以由动态规划等来实现。
4. 参考资料
[1] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introction to Data Mining .
[2] 李航,《统计学习方法》.
[3] Naren Ramakrishnan, The Top Ten Algorithms in Data Mining.