A. 大数据工资待遇一个月多少钱 有哪些岗位
IT技术领域薪资一直是普遍偏高的,而IT技术中,大数据的薪资也是一直高居不下的。大数据平均月薪30.1k,达到IT行业平均月薪榜首。
大数据薪资待遇怎么样
工作方向不同,工作经验不同工资多少不定。以大数据开发工程师为例:应届毕业生,7K+;1-2年,8-14K;3-4年,18K+;5年以上,25K+,这些都是一般情况,具体的工作内容不同还会稍有变动。
但是数据分析师这个职位大概是最常见的,指的是不同行业中,专门从事行业内数据搜集、整理、分析,并依据这些数据做出研究、评估的专业人员。
大数据就业岗位从大的岗位划分上来看,当前大数据岗位可以分为开发岗、算法岗(数据分析)、运维岗等,开发岗的任务涉及到两大方面,其一是完成业务实现,其二是完成数据生产,目前很多传统软件开发任务正在逐渐向大数据开发过渡,这也导致当前大数据开发岗的人才需求量更大一些。从事大数据开发岗,还需要重点学习云计算相关的知识,尤其是PaaS。
B. 数据科学与大数据技术专业的前景怎么样,该选择主攻开发还是算法
首先,从近两年数据科学与大数据技术(数科)专业的就业情况来看,整体的就业表现还是比较不错的,虽然该专业是新兴专业之一,但是就业表现已经成为了继计算机科学与技术、软件工程这两个专业之后,又一个就业表现比较突出的计算机大类专业。
从当前大的计算机发展趋势来看,未来在工业互联网逐渐落地应用之后,产业领域会释放出大量大数据专业人才的需求,而且高附加值岗位也会比较多,从这个角度来看,未来数科专业的就业前景还是非常广阔的。
数科专业本身是一个交叉学科,涉及到的内容比较多,所以要想有一个较好的学习体验,同时提升自身的就业竞争力,一定要尽早确定一个自己的主攻方向,围绕主攻方向来制定学习规划。对于本科生来说,如果没有继续读研的计划,可以围绕开发岗的要求来制定学习规划。实际上,当前很多大数据方向的研究生也会从事开发岗。
从大的人才需求趋势来看,未来开发岗的人才需求量依然会比较大,相对于算法岗来说,开发岗的竞争并不算激烈,也有不少进大厂的机会。要想从事开发岗,要重视三方面知识的学习,其一是重视编程语言(Java、Python)的学习,其二是重视大数据平台(Hadoop、Spark)的学习,其三是重视场景开发知识的积累。
总体上来说,计算机大类专业的学习规划需要按照不同阶段来制定,不同阶段有不同阶段的侧重点。
我从事教育、科研多年,目前在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以私信我!
C. 学习大数据是否需要学习Java
当前大数据领域的岗位主要集中在三个大的方向,分别是大数据开发方向、大数据分析方向和大数据运维方向,其中大数据开发岗位的人才需求量相对比较大,而且岗位附加值也比较高,目前几乎与算法岗持平了,所以如果未来要想从事大数据开发岗,那么学习一下Java还是很有必要的。
相对于大数据分析(算法)岗位来说,大数据开发岗位的竞争就没有那么激烈了,而且开发岗位对于从业者的学历要求也并不算高,本科生也可以从事开发岗,因此对于很多本科生来说,选择主攻大数据开发方向也是比较现实的选择。实际上,由于算法岗位的竞争比较激烈,现在很多研究生也会选择从事开发岗位,而且未来随着工业互联网的落地应用,大数据开发岗的人才需求量也会逐渐增加。
当前Java、Python、Scala、Go等编程语言在大数据开发领域的应用还是比较普遍的,由于Java语言的技术生态比较健全,所以很多开发团队更愿意采用Java语言来完成大数据开发,这也会在一定程度上降低开发风险,所以如果掌握Java语言,那么在大数据开发领域会有较多的就业机会。
关于学习大数据是否需要学习Java,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
D. 大数据就业岗位有哪些 毕业能干什么
大数据就业岗位主要围绕数据价值化来展开,涉及到数据采集、数据整理、数据存储、数据分析、数据安全、数据应用等诸多方面。
从大的岗位划分上来看,当前大数据岗位可以分为开发岗、算法岗(数据分析)、运维岗等,开发岗的任务涉及到两大方面,其一是完成业务实现,其二是完成数据生产,目前很多传统软件开发任务正在逐渐向大数据开发过渡,这也导致当前大数据开发岗的人才需求量更大一些。从事大数据开发岗,还需要重点学习云计算相关的知识,尤其是PaaS。
算法岗与场景也有非常紧密的联系,但是由于算法岗对于从业者的要求比较高,所以要想从事算法岗往往需要较高的学历做支撑。由于算法岗的岗位附加值比较高,所以很多研究生,包括博士研究生都比较热衷于算法岗,这导致算法岗的竞争非常激烈。另外,当前由于人工智能技术的落地应用依然存在一定的瓶颈,所以算法岗目前也有所降温。
大数据运维岗的人才需求量也相对比较大,大数据运维岗的覆盖面也非常广,数据采集、管理、存储、安全、大数据平台搭建等内容都可以归类到大数据运维岗,而且从事运维岗位还需要掌握大量的网络知识和服务器知识。
1、大数据开发工程师
大数据开发工程师,很多公司都在招聘的热门技术人才,工资也是相对于其他方向更高一些。想要成为大数据开发工程师需要掌握计算机技术、hadoop 、spark、storm开发、hive 数据库、Linux 操作系统等知识,具备分布式存储、分布式计算框架等技术。
2、大数据分析师
大数据分析师是数据师的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
作为一名数据分析师、至少需要熟练SPSS、STATISTIC、Eviews、SAS、大数据魔镜等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。总之,一个优秀的数据分析师,应该业务、管理、分析、工具、设计都不落下。
3、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,基本的比如线性代数、高等代数、凸优化、概率论等。
经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
4、大数据可视化工程师
随着大数据在人们工作及日常生活中的应用,大数据可视化也改变着人类的对信息的阅读和理解方式。从网络迁徙到谷歌流感趋势,再到阿里云推出县域经济可视化产品,大数据技术和大数据可视化都是幕后的英雄。
E. 算法和开发岗相比,哪个前景更好呢
这两个岗位的工作内容我都接触过,目前我带的大数据团队中既有算法工程师也有开发工程师,所以我说一说这两个岗位的区别,以及未来的发展方向。
算法设计与算法实现
通常涉及到算法的岗位有两个,分别是算法设计和算法实现,现在有不少团队把这两个岗位进行合并,做算法设计的同时也要负责实现。但是也有一些团队是分开的,做算法设计的不管实现过程。
算法岗位门槛是很高的,人才也是稀缺的,总体发展空间很好。还有一点算法岗位的不可替代性强,如果有机会去算法岗建议是去的,一般学历要求在硕士,Java本科大专都是可以的哈。从工作的复杂性上来说,算法工程师的工作强度还是比较大的,但是算法工程师的职业周期也比较长。
算法岗主要是在于如何量化我们的产出,写代码做开发非常简单。你完成了一个任务或者是项目,有了经验之后,这是在简历上实打实的东西。很多算法工程师最终成长为企业的首席科学家,或者是首席技术官等岗位,可以说算法工程师的发展前景还是非常不错的。
开发岗位
软件团队的大部分岗位都是开发岗位,有前端开发、后端开发、移动端开发等,可以说大部分程序员做的都是开发岗的工作。
与算法岗位不同的是,开发岗位人数多,占比大,而且大部分开发岗位的职业周期都比较短,一般开发岗位在做到一定年龄(比如35岁)之后都会转型。一部分会转向项目经理等管理岗位,一部分会转型做架构师,还有一部分转型为行业咨询专家等,当然,也有一部分开发人员转型为算法工程师。
一个优秀的开发者不是网上说的那样吃青春烦的,每一个岗位都会有自己的未来职业发展。开始确实是青春饭,因为大多数人不懂如何提升自己在公司当中的潜在价值,或者不知道如何更加聪明的完成任务。
其实两个岗位没有什么可比性。聊聊这两个岗位的突出项,开发门槛不很高的,算法就相对高一些,因为涉及大数据人工智能等等。现在做算法的话,5年左右基本会成为专家,给别人讲,因为大多数的人是不太懂算法的,所以会觉得你很牛。收入上来说,算法的收入是高于开发的。创业的话,大白话就是算法其实是更容易给别人讲故事的,而且相对产品来说,算法是更容易形成产品的。
F. 大数据、计算机科学与技术和人工智能哪个好
作为一名计算机专业的教育工作者,我来回答一下这个问题。
首先,大数据、计算机科学与技术和人工智能这三个专业都属于当前比较热门的专业,从专业本身的设置来看,大数据专业更偏向于大数据领域的专业人才培养,计算机科学与技术专业更注重学生知识结构的全面性,而人工智能专业则主要以培养人工智能领域的人才为主。
从当前行业领域的人才需求情况来看,在研发领域,当前大数据和人工智能人才的需求量比较大,所以目前相关方向的研究生往往有较强的岗位竞争力,薪资待遇也比较高,但是在行业应用领域,目前更需要实践能力比较强的开发人才。所以,如果当前选择大数据和人工智能专业,最好要继续读一下研究生。
计算机科学与技术专业是比较传统的计算机专业之一,该专业比较重视学生基础知识的培养,所以未来学生的岗位适应能力还是比较强的。如果未来要明确在IT行业内发展,本科阶段选择计算机科学与技术专业是比较稳妥的选择,未来的选择空间也会比较大,读研时也可以向大数据和人工智能方向发展。
大数据专业虽然开设的时间并不长,但是由于大数据技术体系相对比较成熟,所以学习大数据专业也会有一个比较系统的学习过程。大数据目前正处在落地应用的初期,所以目前大量的岗位还集中在平台研发相关领域,所以人才需求也以研发型人才为主。大数据是典型的交叉学科,涉及到数学、统计学和计算机三大部分,所以选择大数据专业还是相对比较辛苦的。
人工智能专业目前仅有一小部分高校在本科阶段有所开设,而且由于人工智能专业的学习难度相对比较大,所以选择人工智能专业的学生要具有较强的学习能力。相对于计算机科学与技术专业和大数据专业来说,选择人工智能专业需要付出更多的努力,学习的压力也相对比较大。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
三者其实是相辅相成的,也是不可割裂的,举个例子,要实现很多功能,都需要用到着三种技术:
1、电话机器人
基于多轮对话、语音识别、语音合成、语言理解等多项自研技术引擎,可实现多种可选音色自主呼入、呼出功能、媲美真人对话体验,支持打断、智能人工转换、实现低成本、高效率精准触达。
2、智能坐席系统
智能人机融合的工作模式,动态分类、智能调度、减少等待、同时充分发挥人工客服服务优势,提升服务效率及满意度;智能预判用户是否已完成沟通,从队列中主动接入更多用户;高峰时段,可自动调整服务器策略保证服务可用性。
3、坐席智能辅助
话术实时推荐、深度人机融合,帮助客服新手快速熟练业务,提升服务效率;基于多项智能语音、语言技术的实时质检,对违规行为及时提醒,降低服务风险;同业务场景导航,关键节点遗漏提醒,建立服务标准,提升服务质量。
4、智能质检
基于语音识别、语言理解等多项核心技术的主动通话质检,无需人工干预;全量智能质检,全面检测服务质量,自动生成报表;智能数据分析,违规行为分析,自动生成建议,提升服务质量;服务话术沉淀,机会线索挖掘。
5、全渠道接入
全渠道客户接入,涵盖网页、APP、微信公众号、H5、小程序等渠道,实现不同渠道用户的统一服务与管理,实现客服工作的标准化、可视化。支持文字、图片、表情等多种类型富媒体消息。
5、工单管理系统
改变传统工单系统的股优化流程限制,客服人员可根据实际情况自行创建、转交等,更加灵活人性化,符合实际工作所需。一键实现跨部门工单流转,促进多部门协同,提升问题响应速度与解决效率。
6、文本机器人
基于深度学习的语义级理解及知识库,机器人拥有强大的理解能力,能够实现文本城市的精准回复,单轮多轮交互,减缓人工客服压力,提升服务效率。
7、智能CRM
支持对接内部CRM系统获得数据,实现对客户资料的智能标签化管理,提醒、建立动态化、数学化客户档案。将客户服务与后续管理形成一体化,沉淀有效数据,便于公司统一管理,跟进、监管,提升转化率。
8、智能监控
对服务过程的实时监控,可自定义设置关键指标,触发后实现智能提示、警告或转人工干预,实现对服务过程的智能监控,是服务过程趋于高标准,合理高效的调配企业内部资源。
简单粗暴一点吧!想要对比哪个专业好,首先要了解这个专业本身。如果连了解都不知道,又怎么能够对比出来呢?
所用软件知涯升学,里面的生涯规划可以一站式查询专业详细和就业去向。职业库更是一网打尽所有专业-职业相关的信息和薪酬待遇。
更有招生计划、院校大全可查!
希望对你能够有帮助!
数据科学与大数据技术属于统计学范畴。人工智能是一个复合型的交叉学科,本科上他的专业性质并不突出,和计算机专业大致相同,只不过多了一些其他专业的课,但是计算机学的也不深入。如果能够考研继续学习,然后选择方向的话,这几个专业都是不错的,因为人工智能的基础,就是大数据在支持。用好您家里的“文昌位”,和孩子的生辰的“文昌星”,摆上一套能旺文昌的文昌笔,学习就能进步,提升学习运气和考试运气,早日“开窍”。
在我看来,三门学科的特点:
1 虽然我只是一个测试,但前两个学科的相关知识,我基本上都学过一些,属于易学难精的那种,而人工智能相关领域的教程,因为我数学差,所以完全听不懂
2 前两者毕业之后,工作竞争大,但好在岗位比较多;后者岗位较少
(找工作时,看到面试表格,发现大数据的面试者特别多,人工智能仅仅两三个)
数据科学与大数据技术,人工智能,计算机科学与技术三个专业都非常好,都有着强大的生命力和广阔的发展前景。考生可以根据自己的兴趣爱好,以及人生职业生涯规划进行选择。
数据科学与大数据技术,人工智能是计算机科学技术的不同的研究方向,在经济, 社会 , 科技 ,军事,应急救援。气象灾害预报,农业生产,公安情报,医疗卫生,文化教育等领域都有着广泛的应用。人工智能已经深入到了我们生活的各个领域,推动了生产力的蓬勃发展;大数据科学与技术通过挖掘,整理,分析,能够准确地提供某一领域的概率发生的基本情况,能够便捷方便的为人们提供相关领域的专业服务,为人们科学的预测和精准的研判以及决策提供科学的依据,因此,这些专业都是具有强大生命力的专业,都是在未来相当长的时间内具有广阔发展前景的专业都非常好。
计算机科学与技术专业要求学生具备相当深厚的物理知识。数学知识,还有比较强大逻思维推理能力。学生如果要报考计算机科学与技术专业,可以选择报考北京大学,清华大学,东北大学,上海交通大学,中国科学技术大学,战略支援部队信息工程大学,东南大学,电子 科技 大学,北京邮电大学,西安电子 科技 大学等院校。
谢了!三个技术应用到_恰到好处_适可而止_都好!过于依赖_都不好!为什么?因为,能源 科技 体系的坍塌_将导致与这三个技术相关联的一切产生_多米诺骨牌效应。呵呵,后悔,都来不及了!你说是不是呀?一棒子打回原始,你愿意吗?
个人觉得本科阶段分这几个专业容易让人混淆,建议先学计算机科学与技术这类宽口径专业,后期进一步选择。但是不管啥专业,把数学学好。
听起来都很高大上的专业,相信自己的数学成绩可以继续深造。否则,雾里云里,轻轻的来了正如轻轻的走了。
计算机专业好吗?听说就业一般,毕竟学计算机的人太多了,人工智能怕本科生学不到什么东西,还是大数据稍微靠谱一点