导航:首页 > 数据分析 > 麦当劳选址如何运用大数据

麦当劳选址如何运用大数据

发布时间:2024-07-16 02:59:06

大数据如何与零售业结合 在实战中应用

大数据如何与零售业结合 在实战中应用

一、“大数据”的商业价值

1、对顾客群体细分

“大数据”可以对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和“大数据”的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。

2、模拟实境

运用“大数据”模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。Blog、Twitter、Facebook和微博等社交网络也在产生着海量的数据。

云计算和“大数据”分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以数据化。“大数据”技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案投入回报最高。

3、提高投入回报率

提高“大数据”成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。“大数据”能力强的部门可以通过云计算、互联网和内部搜索引擎把”大数据”成果和“大数据”能力比较薄弱的部门分享,帮助他们利用“大数据”创造商业价值。

4、数据存储空间出租

企业和个人有着海量信息存储的需求,只有将数据妥善存储,才有可能进一步挖掘其潜在价值。具体而言,这块业务模式又可以细分为针对个人文件存储和针对企业用户两大类。主要是通过易于使用的API,用户可以方便地将各种数据对象放在云端,然后再像使用水、电一样按用量收费。目前已有多个公司推出相应服务,如亚马逊、网易、诺基亚等。运营商也推出了相应的服务,如中国移动的彩云业务。

5、管理客户关系

客户管理应用的目的是根据客户的属性(包括自然属性和行为属性),从不同角度深层次分析客户、了解客户,以此增加新的客户、提高客户的忠诚度、降低客户流失率、提高客户消费等。 对中小客户来说,专门的CRM显然大而贵。不少中小商家将飞信作为初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发布新产品预告、特价销售通知,完成售前售后服务等。

6、个性化精准推荐

在运营商内部,根据用户喜好推荐各类业务或应用是常见的,比如应用商店软件推荐、IPTV视频节目推荐等,而通过关联算法、文本摘要抽取、情感分析等智能分析算法后,可以将之延伸到商用化服务,利用数据挖掘技术帮助客户进行精准营销,今后盈利可以来自于客户增值部分的分成。

以日常的“垃圾短信”为例,信息并不都是“垃圾”,因为收到的人并不需要而被视为垃圾。通过用户行为数据进行分析后,可以给需要的人发送需要的信息,这样“垃圾短信”就成了有价值的信息。在日本的麦当劳,用户在手机上下载优惠券,再去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集相关消费信息,例如经常买什么汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。

7、数据搜索

数据搜索是一个并不新鲜的应用,随着“大数据”时代的到来,实时性、全范围搜索的需求也就变得越来越强烈。我们需要能搜索各种社交网络、用户行为等数据。其商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。

运营商掌握的用户网上行为信息,使得所获取的数据“具备更全面维度”,更具商业价值。典型应用如中国移动的“盘古搜索”。

二、“大数据”与零售业的结合运用

对于数据的使用,许多实体零售商同样表示非常重视,他们对企业积累的数据进行了各种预测和分析。然而,对具体的销售业务来说,往往存在理想与现实的纠结,前不久市场中一家知名的服装零售企业一方面在宣传盈利上市的同时,一方面曝出有近10亿元的库存。国内很多零售企业都知道“大数据”应用的好处,但他们一旦将“大数据”的应用结合到自己的企业经营中时,便会出现与目前经营有非常大的不适应问题,如此导致许多企业对此都持非常谨慎的态度。

1、将零售策略与“大数据”技术进行结合

零售企业谈的“大数据”的最大价值,是在零售策略上与“大数据”技术进行结合,最大程度地编制前置性的零售策略,确保销售计划的实现。“大数据”讲究四个“V”:一是数据体量大(Volume);二是数据类型复杂(Variety),多涉及到各种结构性与非结构性的;三是价值密度低(Value),这和体量大是相对应的;四是数据更新与处理速度快(Velocity)。

根据这些特性主动地在业务数据产生的同时做出相应的策略应对,会为企业赢得更多的时间和市场策略调整空间。这类似于大江大河的洪峰预警,上游的洪峰出现什么状况,下游要做什么样的应对。数据用到这一层面上,才具有直接的业务价值,这不是那种销量同期比、环比、销售计划比数据能指导业务的价值能相比的。例如一家涉足线上业务的实体零售商,在一组货品的15分钟促销时间内,往往准备着3套应变策略,以确保货品能够按计划卖出。

在实体商业领域,有许多关于数据与营销的案例。一个较早的版本就是美国沃尔玛啤酒和尿布的数据关系。原来,美国的妇女在家照顾孩子,所以她们会嘱咐丈夫在下班回家的路上为孩子买尿布,而丈夫在买尿布的同时又会顺手购买自己爱喝的啤酒。

当分析师了解到啤酒和尿布销量存在正相关关系、并进一步分析的时候,发现了这样的购买情境,于是将这两种属于不同门类的商品摆在一起。这个发现为商家带来了新的销售组合。当然,即使再多的零售连锁企业知道这个故事,也极少从平时销售中能发现这样的组合,哪怕是牵强附会的。

所以,零售策略设计是零售业“大数据”价值最大的地方,也是“大数据”可以直接为其提供支持的业务。

2、零售企业对“大数据”应保持正确态度

企业的领导者首先要重视“大数据”的发展、重视企业的数据中心,把收集顾客数据作为企业营销运营的第一目标;第二,对企业内部人员进行培训及建立收集数据的软硬件机制;第三,以业务需求为准则,确定哪些数据是需要收集的;第四,确认在企业已有的数据基础上或者未来方向前提下,如何达成前三项目标的基础建设方案。

在这些IT基础工作需要企业有实实在在的投入和建设规范的信息化团队,作为中国商业最大的一分子——中小微型零售企业似乎是不可能也没有足够的能力来面对这样一场变化的。

大中型零售商因为本身业务及利润的积淀,已经能够承担这样一场需求趋势的需要成本。中小微型企业还处于快速发展过程中,如果也如同大中型企业进行全方面的投入,将很快会被新型的IT工具拖垮或者遭受重创。

但这并不意味着中小零售企业没有机会,实际上IT的发展为所有的企业都提供了平等的选择,云计算的广泛应用即是对这样一场变革带来的临时礼物。

作为中小微型零售企业,完全不必考虑自己建设一套“大数据”的IT系统,他们从精力、成本、能力上来说都不适合,因此此类企业可以将企业的IT建设外包给适合的服务商,企业本身的所有精力可以投入到对商圈的开发上。

目前,一些IT软件开发运营商也已经针对传统零售企业推出了云服务的基础平台,为中小微型商业企业提供了大型企业和超大型企业同样的基础环境及系统架构,小企业只需清晰地规划出自己的目标和适合的步骤,使用云平台按需付费即可,大可不必进行巨大的初始投入和不可预测的运行成本。

三、“大数据”在零售企业实战中的应用

1、Target

最早关于“大数据”的故事发生在美国第二大的超市塔吉特百货(Target)。孕妇对于零售商来说是个含金量很高的顾客群体。但是他们一般会去专门的孕妇商店而不是在Target购买孕期用品。人们一提起Target,往往想到的都是清洁用品、袜子和手纸之类的日常生活用品,却忽视了Target有孕妇需要的一切。为此,Target的市场营销人员求助于Target的顾客数据分析部要求建立一个模型,在孕妇第2个妊娠期就把她们给确认出来。在美国出生记录是公开的,等孩子出生了,新生儿母亲就会被铺天盖地的产品优惠广告包围,因此必须赶在孕妇第2个妊娠期行动起来。如果Target能够赶在所有零售商之前知道哪位顾客怀孕了,市场营销部门就可以早早的给他们发出量身定制的孕妇优惠广告,早早圈定宝贵的顾客资源。

如何能够准确地判断哪位顾客怀孕? Target想到公司有一个迎婴聚会(baby shower)的登记表,开始对这些登记表里的顾客的消费数据进行建模分析,不久就发现了许多非常有用的数据模式。比如模型发现,许多孕妇在第2个妊娠期的开始会买许多大包装的无香味护手霜;在怀孕的最初20周大量购买补充钙、镁、锌的善存片之类的保健品。最后Target选出了25种典型商品的消费数据构建了“怀孕预测指数”,通过这个指数,Target能够在很小的误差范围内预测到顾客的怀孕情况,因此Target就能早早地把孕妇优惠广告寄发给顾客。

为了不让顾客觉得商家侵犯了自己的隐私,Target把孕妇用品的优惠广告夹杂在其他一大堆与怀孕不相关的商品优惠广告当中。

根据这个“大数据”模型,Target制订了全新的广告营销方案,结果Target的孕期用品销售呈现了爆炸性的增长。Target的“大数据”分析技术从孕妇这个细分顾客群开始向其他各种细分客户群推广,从Target使用“大数据”的2002年到2010年间,Target的销售额从440亿美元增长到了670亿美元。

2、ZARA

ZARA平均每件服装价格只有LVHM四分之一,但是,回看两家公司的财务年报,ZARA税前毛利率比LVHM集团还高23、6%。

(1)分析顾客的需求

在ZARA的门店里,柜台和店内各角落都装有摄影机,店经理随身带着PDA。目的是记录其顾客的每个意见,如顾客对衣服图案的偏好,扣子的大小,拉链的款式之类的微小举动。店员会向分店经理汇报,经理上传到ZARA内部全球资讯网络中,每天至少两次传递资讯给总部设计人员,由总部作出决策后立即传送到生产线,改变产品样式。

关店后,销售人员结帐、盘点每天货品上下架情况,并对客人购买与退货率做出统计。再结合柜台现金资料,交易系统做出当日成交分析报告,分析当日产品热销排名,然后,数据直达ZARA仓储系统 。

收集海量的顾客意见,以此做出生产销售决策,这样的作法大大降低了存货率。同时,根据这些电话和电脑数据,ZARA分析出相似的“区域流行”,在颜色、版型的生产中,做出最靠近客户需求的市场区隔。

(2)结合线上店数据

2010年,ZARA同时在六个欧洲国家成立网络商店,增加了网络巨量资料的串连性。2011年,分别在美国、日本推出网络平台,除了增加营收,线上商店强化了双向搜寻引擎、资料分析的功能。不仅回收意见给生产端,让决策者精准找出目标市场;也对消费者提供更准确的时尚讯息,双方都能享受“大数据”带来的好处。分析师预估,网络商店为ZARA至少提升了10%营收。

此外,线上商店除了交易行为,也是活动产品上市前的营销试金石。ZARA通常先在网络上举办消费者意见调查,再从网络回馈中,撷取顾客意见,以此改善实际出货的产品。

ZARA将网络上的海量资料看作实体店面的前测指标。因为会在网络上搜寻时尚资讯的人,对服饰的喜好、资讯的掌握,催生潮流的能力,比一般大众更前卫。再者,会在网络上抢先得知ZARA资讯的消费者,进实体店面消费的比率也很高。

这些顾客资料,除了应用在生产端,同时被整个ZARA所属的英德斯(Inditex)集团各部门运用:包含客服中心、行销部、设计团队、生产线和通路等。根据这些巨量资料,形成各部门的KPI,完成ZARA内部的垂直整合主轴。

ZARA推行的海量资料整合,后来被ZARA所属英德斯集团底下八个品牌学习应用。可以预见未来的时尚圈,除了台面上的设计能力,台面下的资讯/数据大战,将是更重要的隐形战场。

(3)对数据快速处理、修正、执行

H&M一直想跟上ZARA的脚步,积极利用“大数据”改善产品流程,成效却不彰,两者差距愈拉愈大,这是为什么?

主要的原因是,“大数据”最重要功能是缩短生产时间,让生产端依照顾客意见,能于第一时间迅速修正。但是,H&M内部的管理流程,却无法支撑“大数据”供应的庞大资讯。H&M的供应链中,从打版到出货,需要三个月左右,完全不能与ZARA两周的时间相比。

因为H&M不像ZARA,后者设计生产近半维持在西班牙国内,而H&M产地分散到亚洲、中南美洲各地。跨国沟通的时间,拉长了生产的时间成本。如此一来,“大数据”即使当天反映了各区顾客意见,无法立即改善,资讯和生产分离的结果,让H&M内部的“大数据”系统功效受到限制。

“大数据”运营要成功的关键,是资讯系统要能与决策流程紧密结合,迅速对消费者的需求作出回应、修正,并且立刻执行决策。

3、亚马逊

此前亚马逊并未大张旗鼓推展广告业务,直至2012年年底,有报道指出,亚马逊即将推出实时广告交易平台,从而向Facebook和谷歌发起挑战。这个实时广告交易平台又称“需求方平台”(Demand Side Platform,DSP),可以让广告与目标消费者相遇。广告商可以在“需求方平台”上竞标网站的闲置广告空间,而竞标标的包括广告版位,以及符合特定条件的消费者。

亚马逊开发的“需求方平台”可以“协助广告商接触网路上的众多用户,同时也帮助客户迅速找到想购买产品的相关资讯”,“需求方平台”概念虽非亚马逊首创,但以丰富资料为后盾。

亚马逊与广告商分享的资讯有两类,一是依用户网路行为所做的通用分类,例如热衷时尚、喜爱电子产品、身份为母亲、爱喝咖啡等,二是用户的商品搜寻记录。至于消费者的实际购物资料,亚马逊似乎尚未列入分享。广告商即使无法得知实际消费记录,能了解潜在顾客的商品搜寻记录;亚马逊如果全力进军网路广告市场,仍可能大大改变产业生态。

亚马逊2012年的广告收入约为5亿美元, 2013年的广告收入将达10亿美元。这会成为亚马逊未来几年内营收增长的新动力,更重要的是,它可能是亚马逊各项业务中利润率最高的业务之一。

4、沃尔玛

2011年,沃尔玛电子商务的营收仅是亚马逊的五分之一,且差距年年扩大,让沃尔玛不得不设法奋起直追,找出各种提升数字营收的模式。最终,沃尔玛选择在社交网站的移动商务上放手一搏,让更大量、迅速的资讯,进入沃尔玛内部销售决策。沃尔玛的每张购买建议清单,都是大量资料运算而出的结果。

2011年4月,沃尔玛以3亿美元高价收购了一家专长分类社群网站Kosmix。Kosmix不仅能收集、分析网络上的海量资料(大数据)给企业,还能将这些资讯个人化,提供采购建议给终端消费者(若不是追踪结帐资料,这些细微的消费者习惯,很难从卖场巡逻中发现)。这意味着,沃尔玛使用的“大数据”模式,已经从“挖掘”顾客需求进展到要能够“创造”消费需求。

沃尔玛本身就是一个海量资料系统,适用各种商业上的分析行为,它的综合功能,作为世界最大的零售业(专题阅读)巨人,沃尔玛在全球超过200万名员工,总共有110个超大型配送中心,每天处理的资料量超过10亿笔。由于资料量过于庞大,沃尔玛的“大数据”系统最重要的任务,就是在做出每一笔决定前,将执行成本降到最低,并且创造新的消费机会。

Kosmix为沃尔玛打造的“大数据”系统称做“社交基因组(Social Genome)”,连结到Twitter、Facebook等社交媒体。工程师从每天热门消息中,推出与社会时事呼应的商品,创造消费需求。分类范围包含消费者、新闻事件、产品、地区、组织和新闻议题等。同时,针对社交网络快消息流的性质,沃尔玛内部的“大数据”实验室专门发展出一套追踪系统,结合手机上网,专门管理追踪庞大的社交动态,每天能处理的资讯量超过10亿笔。

“社交基因组”的应用方式五花八门。举例来说,沃尔玛实验室内部软件能从Foursquare平台上的打卡记录,分析出在黑色星期五,不同地区消费者最常购买的品项,然后,针对不同地区送出购买建议。

以上是小编为大家分享的关于大数据如何与零售业结合 在实战中应用的相关内容,更多信息可以关注环球青藤分享更多干货

㈡ 大数据选址是如何实现的

大数据选址为零售业创业者获得了深刻、全面的洞察能力,并提供了前所未有的空间与潜力。
何为大数据选址?
大数据时代下的精准选址是指通过大数据进行整合分析,获取用户的喜好和行为需求,对商圈消费群体的购买力进行分析,找出适合店面的绝佳位置。
大数据精准选址的核心可以概括为几大关键词:用户、需求、峰值以及热力分布。
以往的店面选址方式,是先根据当地的城市,对城市商圈、人口流动量、周围的小区、以及实际住户量等等, 做出详细的对比和考察。然后再通过自身的经济情况,选出一个自己能够承担得了,且地段好的店面位置。
而大数据选址,则为店面选址制定了更加详细周密的计划,将选址细化为两个流程。
第一步先锁定商圈,选址系统内有着全国热力值分布的整合数据,系统根据加盟商提供的区域,根据外卖峰值的数据进行按比例分成,通过区域内外卖的需求量锁定商圈。
根据外卖峰值锁定商圈是有一定的科学依据,据研究发现,人们在追求高效率的生活中,存在一个就近原则。在食客选择外卖的时候,无论是在配送时间或者是距离,都是优先考虑到的问题。
外卖峰值高的商圈有着大量的消费群体,也就蕴含着巨大的商机,而用外卖反衬堂食,在日常营业中有效的引流,更能刺激消费。
在锁定好商圈以后,第二步就是确定店面的位置了,营运师傅会亲自上门进行考察,对锁定的商圈进行分析。
根据不同项目所针对的消费群体以及加盟商自身的经济状况,选出一个客流量旺盛且地段好的店面位置。
开启餐饮作为最早一批大数据选址系统的尝试者,在8月份正式全面上线,上线一月之内就受到其合作商的一致好评,帮助了加盟商快速精确地确定店面,缩短了开业前的准备时间。实践证明,大数据选址系统确确实实存在着优越性!
大数据选址系统之所以受到合作商的关注,是因为他们深知选址的重要性。对开店创业者来说,选址关系着店铺的发展前途,关系着店铺经营目标的实现,关系着市场的火爆程度,还关系着顾客需求的满足。可以说,做好了选址,开店创业就成功了一半。
阿拉丁智店“慧选址”在国内独家实现了店铺选址相关所有权威数据源的集成和整合。
数据方面,基于三大运营商15亿去标识化的手机信令数据、BAT网民上网和搜索特征数据、全国银行卡消费数据,以及全国写字楼数据、小区数据和全量POI数据,阿拉丁智店“慧选址”实现了任选地理区域全量用户全时段、全方位覆盖。通过3700个用户标签,可以精准筛选和锁定目标客群。目前,我们日处理5480亿条上网记录信息、670亿位置记录信息,成功识别4200个手机品牌、20万个互联网产品、7000余款APP、10.5万个终端型号和4亿个URL。
选址算法和模型方面,我们通过核密度模型、空间插值模型、ODPA模型、力导向布局模型、商圈分析模型、价值因素模型等经典算法和模型的开发,为零售企业的选址提供了智能化保障。
目前,阿拉丁智店已经为麦当劳、星巴克、工商银行、武汉某知名连锁超市、中国福彩、残联等上千家政府机构和企业提供了智能选址服务,取得了明显收益和效果,受到客户的高度评价。

㈢ 大数据将如何改造餐饮业

大数据将如何改造餐饮业_数据分析师考试

两年前,用IPDA点餐对餐饮行业来说是一件新鲜事。但两年后,这种新鲜也只是大巫见小巫了。最近麦当劳竟然在中国市场引入了自创汉堡的项目,给消费者提供24种食材,让消费者在一个足有半平米的大PAD上自行搭配,然后刷卡支付。吃麦当劳叔叔的汉堡进入中国25年,还从来没有像现在这么干过。

麦当劳也仅是一个案例而已。在移动互联网、互联网+等火爆概念之下,我们从来没感觉到餐饮这样一个熟悉的消费场景其实也是很“酷”很“爽”的。因为到餐厅吃饭以前只能银联刷卡,现在微信、支付宝等各种更便捷的支付已经逐步杀到。以前要出去吃饭,我们只能老老实实地到餐厅去,甚至繁忙时候还要排队,但现在我们可以用手机轻松地叫个外卖,或者用手机提前订好桌,顺便把菜点好、把账结好,到餐厅后菜已经满满地摆上桌。

餐饮行业数字化的改造已经普遍到来。但在这些数字化的体验背后,还蕴藏着一个大大的空间--大数据的运用。

数据,已经渗透到现在每一个行业。企业对海量数据的挖掘和运用,预示着一个新的增长端口打开了。大数据究竟是什么?以服装行业为例,一家数十亿规模的企业,其消费者起码是百万级的。如果能够通过系统将这些消费者的数据一个个抓起来、并进行很好的分析,可以让服装企业很好地了解到不同区域的消费者的消费需求,从而让企业能够在生产上就能进行更有针对的研发,然而更精准地向市场投放个性化的产品,服务好消费者。

相对于服装行业而言,即使同一个餐饮品牌不同门店的同一道菜或许都有口感的差异,因此餐饮并不是一个标准消费品。有人可能会怀疑,餐饮是随意性消费很强的行业,大数据挖掘究竟能有多大意义?

我们不妨先从其他行业的发展轨迹倒推大数据在餐饮行业的用处。要搜集大数据,首先要生成顾客的账户信息。这个账户信息能记录下客人对餐厅的出品和服务的评价;能记录下消费者特殊的消费偏好、消费能力甚至消费者的等待时长、用餐时长等数据。这些数据在餐厅给客人做合理的食谱推荐时可提供依据。

具体而言,可能会触及以下一些消费场景。比如一个餐厅推出牛肉新菜式,系统会自动将信息推送到有喜好牛肉的消费者的手机中。再比如餐厅发现其某款菜式特别热销,想开发成工业化产品进入家庭,那么系统能精准地找到喜欢这道菜的消费者作意见反馈和消费测试,甚至这批消费者很可能就是这款新品未来的首批种子用户。

总之,大数据在餐饮行业应用的意义在于为餐饮企业节省成本、增强管理、提升客源和业绩、提升消费者的服务体验。

不过有一点值得关注。所谓大数据,现在对于餐饮行业而言仅是小荷才露尖尖角。现在不少餐饮企业已经从会员管理系统搜集数据,但搜集信息只是第一步,后面还有大量的数据分析工作。而这一块,大部分餐饮企业并不懂如何做。另外,要让这些数据真正发挥功效,需要一个精细化运营的阶段,这或许需要一个比较长的周期才能见效果。这一点,连麦当劳这样成熟的餐饮连锁也向笔者坦承,其目前对大数据的运用还只在起步阶段。

不过我们也不妨大胆遥想一下。某天你下班路上饥肠辘辘,正准备打电话叫个香辣培根PIZZA外卖回家饱餐一顿,但餐厅的话务员可能告诉你:“女士,建议您点个其他PIZZA试试?因为后台监测到您前两天喉咙发炎去了趟医院。”而如果你在犹豫究竟该点什么PIZZA时,话务员可能又提醒你:“女士,您之前点过好几次芝士PIZZA,您是要继续点芝士PIZZA还是试试我们最近推的新口味?”当你下完订单报上家庭住址后,话务员可能又会提醒你:“女士,根据您手机显示的定位信息,您距离我们最近的门店大概300米,如果您选择到门店自取,会比我们送餐提早半个小时吃到PIZZA哦。”

这种消费场景似乎有点“恐怖”,但未来也并非没有可能。

以上是小编为大家分享的关于大数据将如何改造餐饮业的相关内容,更多信息可以关注环球青藤分享更多干货

㈣ 大数据时代的提供依据

大数据是信息通信技术发展积累至今,按照自身技术发展逻辑,从提高生产效率向更高级智能阶段的自然生长。无处不在的信息感知和采集终端为我们采集了海量的数据,而以云计算为代表的计算技术的不断进步,为我们提供了强大的计算能力,这就围绕个人以及组织的行为构建起了一个与物质世界相平行的数字世界 。
大数据虽然孕育于信息通信技术的日渐普遍和成熟,但它对社会经济生活产生的影响绝不限于技术层面,更本质上,它是为我们看待世界提供了一种全新的方法,即决策行为将日益基于数据分析做出,而不是像过去更多凭借经验和直觉做出。
事实上,大数据的影响并不仅仅限于信息通信产业,而是正在“吞噬”和重构很多传统行业,广泛运用数据分析手段管理和优化运营的公司其实质都是一个数据公司。麦当劳、肯德基以及苹果公司等旗舰专卖店的位置都是建立在数据分析基础之上的精准选址。而在零售业中,数据分析的技术与手段更是得到广泛的应用,传统企业如沃尔玛通过数据挖掘重塑并优化供应链,新崛起的电商如卓越亚马逊、淘宝等则通过对海量数据的掌握和分析,为用户提供更加专业化和个性化的服务。
最让人吃惊的例子是,社交媒体监测平台DataSift监测了Facebook(脸谱) IPO当天Twitter上的情感倾向与Facebook股价波动的关联。在Facebook开盘前Twitter上的情感逐渐转向负面,25分钟之后Facebook的股价便开始下跌。而当Twitter上的情感转向正面时,Facebook股价在8分钟之后也开始了回弹。最终当股市接近收盘、Twitter上的情感转向负面时,10分钟后Facebook的股价又开始下跌。最终的结论是:Twitter上每一次情感倾向的转向都会影响Facebook股价的波动。
这仅仅只是基于社交网络产生的大数据“预见未来”的众多案例之一,此外还有谷歌通过网民搜索行为预测流感爆发等例子。不仅在商业方面,大数据在社会建设方面的作为同样令人惊叹,智能电网、智慧交通、智慧医疗、智慧环保、智慧城市等的蓬勃兴起,都与大数据技术与应用的发展息息相关。
“大数据”可能带来的巨大价值正渐渐被人们认可,它通过技术的创新与发展,以及数据的全面感知、收集、分析、共享,为人们提供了一种全新的看待世界的方法。更多地基于事实与数据做出决策,这样的思维方式,可以预见,将推动一些习惯于靠“差不多”运行的社会发生巨大变革。

㈤ 想开个餐饮店找门面选址。找的有点迷茫了。感觉总是找不到合适的门面咋么办

开过餐饮店的人都知道,餐饮选址是一件耗时、耗力的苦差事。好的店铺位置对于餐饮店来说至关重要,那么,到底怎样将心仪的门店选出来?有哪些工具可以协助我们选址呢?

微信搜索“开店选址评估经理”小程序,借助选址小程序分析,好用而且不收费!

扫描进入小程序,填写相关信息:开店位置,店铺类型,商圈范围,点击开始选址评估。


餐饮选址的方法和途径有很多,但是目前大家常用的还是人工选址和借助互联网工具选址。另外,通过确定参照标准选址,通过中介或找店公司选址,以及动用其 他各种可动用资源都是很好的选址途径。

当然,现在更多的餐饮企业在选址上都是利用大数据进行分析,从而确定最 佳的商 圈地段和人手的。但是无论用什么方式选址,都要先有自己的规划和定位,这样才能有的放矢。

㈥ 浅谈基于大数据时代的机遇与挑战论文

浅谈基于大数据时代的机遇与挑战论文推荐

在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您在写论文时更加简单方便,以下是我精心整理的浅谈基于大数据时代的机遇与挑战论文,仅供参考,希望能够帮助到大家。

浅谈基于大数据时代的机遇与挑战论文

1、大数据的基本概况

大数据(Big Data)是指那些超过传统数据库系统处理能力的数据,其具有以下四个基本特性,即海量性、多样性、易变性、高速性。同时数据类型繁多、数据价值密度相对较低、处理速度快、时效性要求高等也是其主要特征。

2、大数据的时代影响

大数据,对经济、政治、文化等方面都具有较为深远的影响,其可帮助人们进行量化管理,更具科学性和针对性,得数据者得天下。大数据对于时代的影响主要包括以下几个方面:

(1)“大数据决策”更加科学有效。如果人们以大数据分析作为基础进行决策,可全面获取相关决策信息,让数据主导决策,这种方法必将促进决策方式的创新和改变,彻底改变传统的决策方式,提高决策的科学性,并推动信息管理准则的重新定位。2009 年爆发的甲型H1N1 流感就是利用大数据的一个成功范例,谷歌公司通过分析网上搜索的大量记录,判断流感的传播源地,公共卫生机构官员通过这些有价值的数据信息采取了有针对性的行动决策。

(2)“大数据应用”促进行业融合。虽然大数据源于通信产业,但其影响绝不局限于通信产业,势必也将对其他产生较为深远的影响。目前,大数据正逐渐广泛应用于各个行业和领域,越来越多的企业开始以数据分析为辅助手段加强公司的日常管理和运营管理,如麦当劳、肯德基、苹果公司等旗舰专卖店的位置都是基于大数据分析完成选址的,另外数据分析技术在零售业也应用越来越广泛。

(3)“大数据开发”推动技术变革。大数据的应用需求,是大数据新技术开发的源泉。相信随着时代的不断发展,计算机系统的数据分析和数据挖掘功能将逐渐取代以往单纯依靠人们自身判断力的领域应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。

另外,需要注意的是,大数据在个人隐私的方面,容易造成一些隐私泄漏。我们需要认真严肃的对待这个问题,综合运用法律、宣传、道德等手段,为保护个人隐私,做出更积极的努力。

3、大数据的应对策略

3.1 布局关键技术研发创新。

目前而言,大数据的技术门槛较高,在这一领域有竞争力的多为一些在数据存储和分析等方面有优势的信息技术企业。为促进产业升级,我们必须加强研究,重视研发和应用数据分析关键技术和新兴技术,具体可从以下几个方面入手:第一,夯实发展基础,以大数据核心技术为着手点,加强人工智能、机器学习、商业智能等领域的理论研究和技术研发,为大数据的应用奠定理论基础。二是加快基础技术(非结构化数据处理技术、可视化技术、非关系型数据库管理技术等)的研发,并使其与物联网、移动互联网、云计算等技术有机融合,为解决方案的制定打下坚实基础。三是基于大数据应用,着重对知识计算( 搜索) 技术、知识库技术、网页搜索技术等核心技术进行研发,加强单项技术产品研发,并保证质量的提升,同时促使其与数据处理技术的有机结合,建立科学技术体系。

3.2 提高软件产品发展水平。

一是促进以企业为主导的产学研合作,提高软件发展水平。二是运用云计算技术促进信息技术服务业的转型和发展,促进中文知识库、数据库与规则库的建设。三是采取鼓励政策引导软硬件企业和服务企业应用新型技术开展数据信息服务,提供具有行业特色的系统集成解决方案。四是以大型互联网公司牵头,并聚集中小互联网信息服务提供商,对优势资源进行系统整合,开拓与整合本土化信息服务。五是以数据处理软件商牵头,这些软件商必须具备一定的基础优势,其可充分发挥各自的数据优势和技术优势,优势互补,提高数据软件开发水平,提高服务内容的精确性和科学性。同时提高大数据解决方案提供商的市场能力和集成水平,以保障其大数据为各行业领域提供较为成熟的解决方案。

3.3 加速推进大数据示范应用。

大数据时代,我们应积极推进大数据的示范应用,可从以下几个方面进行实践:第一,对于一些数据量大的领域(如金融、能源、流通、电信、医疗等领域),应引导行业厂商积极参与,大力发展数据监测和分析、横向扩展存储、商业决策等软硬件一体化的行业应用解决方案。第二,将大数据逐渐应用于智慧城市建设及个人生活和服务领域,促进数字内容加工处理软件等服务发展水平的提高。第三,促进行业数据库(特别是高科技领域)的深度开发,建议针对不同的行业领域建立不同的专题数据库,以提供相应的内容增值服务,形成有特色化的服务。第四,以重点领域或重点企业为突破口,对企业数据进行相应分析、整理和清洗,逐渐减少和去除重复数据和噪音数据。

3.4 优化完善大数据发展环境。

信息安全问题是大数据应用面临的主要问题,因此,我们应加强对基于大数据的情报收集分析工作信息保密问题的研究,制定有效的防范对策,加强信息安全管理。同时,为优化完善大数据发展环境,应采取各种鼓励政策(如将具备一定能力企业的数据加工处理业务列入营业税优惠政策享受范围)支持数据加工处理企业的发展,促使其提高数据分析处理服务的水平和质量。三是夯实大数据的应用基础,完善相关体制机制,以政府为切入点,推动信息资源的集中共享。

做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进国家和企业的快速发展。

大数据为经营的横向跨界、产业的越界混融、生产与消费的合一提供了有利条件,大数据必将在社会经济、政治、文化等方面对人们生活产生巨大的影响,同时大数据时代对人类的数据驾驭能力也提出了新的挑战与机遇。面对新的挑战与发展机遇,我们应积极应对,以掌握未来大数据发展主动权。

结构

论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。

1、论文题目

要求准确、简练、醒目、新颖。

2、目录

目录是论文中主要段落的'简表。(短篇论文不必列目录)

3、内容提要

是文章主要内容的摘录,要求短、精、完整。

4、关键词定义

关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。

主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。

5、论文正文

(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。

(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:

a.提出问题-论点;

b.分析问题-论据和论证;

c.解决问题-论证方法与步骤;

d.结论。

6、参考文献

一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按进行。

7、论文装订

论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。

;

㈦ 大数据技术及应用

大数据技术及应用
半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到了一个开始引发变革的程度。21世纪是数据信息大发展的时代,移动互联、社交网络、电子商务等极大拓展了互联网的边界和应用范围,各种数据正在迅速膨胀并变大。互联网(社交、搜索、电商)、移动互联网(微博)、物联网(传感器,智慧地球)、车联网、GPS、医学影像、安全监控、金融(银行、股市、保险)、电信(通话、短信)都在疯狂产生着数据。2011年5 月,在“云计算相遇大数据” 为主题的EMC World 2011 会议中,EMC 抛出了Big Data概念。正如《纽约时报》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。哈佛大学社会学教授加里?金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”
二、什么是大数据
大数据(Big Data)是指那些超过传统数据库系统处理能力的数据。它的数据规模和转输速度要求很高,或者其结构不适合原本的数据库系统。为了获取大数据中的价值,我们必须选择另一种方式来处理它。数据中隐藏着有价值的模式和信息,在以往需要相当的时间和成本才能提取这些信息。如沃尔玛或谷歌这类领先企业都要付高昂的代价才能从大数据中挖掘信息。而当今的各种资源,如硬件、云架构和开源软件使得大数据的处理更为方便和廉价。即使是在车库中创业的公司也可以用较低的价格租用云服务时间了。对于企业组织来讲,大数据的价值体现在两个方面:分析使用和二次开发。对大数据进行分析能揭示隐藏其中的信息。例如零售业中对门店销售、地理和社会信息的分析能提升对客户的理解。对大数据的二次开发则是那些成功的网络公司的长项。例如Facebook通过结合大量用户信息,定制出高度个性化的用户体验,并创造出一种新的广告模式。这种通过大数据创造出新产品和服务的商业行为并非巧合,谷歌、雅虎、亚马逊和Facebook它们都是大数据时代的创新者。
(一)大数据的4V特征
大量化(Volume):企业面临着数据量的大规模增长。例如,IDC最近的报告预测称,到2020年,全球数据量将扩大50倍。目前,大数据的规模尚是一个不断变化的指标,单一数据集的规模范围从几十TB到数PB不等。简而言之,存储1PB数据将需要两万台配备50GB硬盘的个人电脑。此外,各种意想不到的来源都能产生数据。
多样化(Variety):一个普遍观点认为,人们使用互联网搜索是形成数据多样性的主要原因,这一看法部分正确。然而,数据多样性的增加主要是由于新型多结构数据,以及包括网络日志、社交媒体、互联网搜索、手机通话记录及传感器网络等数据类型造成。其中,部分传感器安装在火车、汽车和飞机上,每个传感器都增加了数据的多样性。
快速化(Velocity):高速描述的是数据被创建和移动的速度。在高速网络时代,通过基于实现软件性能优化的高速电脑处理器和服务器,创建实时数据流已成为流行趋势。企业不仅需要了解如何快速创建数据,还必须知道如何快速处理、分析并返回给用户,以满足他们的实时需求。根据IMS Research关于数据创建速度的调查,据预测,到2020年全球将拥有220亿部互联网连接设备。
价值(Value):大量的不相关信息,浪里淘沙却又弥足珍贵。对未来趋势与模式的可预测分析,深度复杂分析(机器学习、人工智能Vs传统商务智能(咨询、报告等)
三、大数据时代对生活、工作的影响
大数据,其影响除了经济方面的,它同时也能在政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。
“大数据”的影响,增加了对信息管理专家的需求。事实上,大数据的影响并不仅仅限于信息通信产业,而是正在“吞噬”和重构很多传统行业,广泛运用数据分析手段管理和优化运营的公司其实质都是一个数据公司。麦当劳、肯德基以及苹果公司等旗舰专卖店的位置都是建立在数据分析基础之上的精准选址。而在零售业中,数据分析的技术与手段更是得到广泛的应用,传统企业如沃尔玛通过数据挖掘重塑并优化供应链,新崛起的电商如卓越亚马逊、淘宝等则通过对海量数据的掌握和分析,为用户提供更加专业化和个性化的服务。
大数据在个人隐私的方面,大量数据经常含有一些详细的潜在的能够展示有关我们的信息,逐渐引起了我们对个人隐私的担忧。一些处理大数据公司需要认真的对待这个问题。例如美国天睿资讯给人留下比较深刻印象的是他的一个科学家提出,我们不应该简单地服从法律方面的隐私保护问题,这些远远不够的,公司都应该遵从谷歌不作恶的原则,甚至更应该做出更积极的努力。
四、大数据时代的发展方向、趋势
根据ESM国际电子商情针对2013年大数据应用现状和趋势的调查显示:被调查者最关注的大数据技术中,排在前五位的分别是大数据分析(12.91%)、云数据库(11.82%)、Hadoop(11.73%)、内存数据库(11.64%)以及数据安全(9.21%)。Hadoop已不再是人们心目中仅有的大数据技术,而大数据分析成为最被关注的技术。从中可以看出,人们对大数据的了解已经逐渐深入,关注的技术点也越来越多。既然大数据分析是最被关注的技术趋势,那么大数据分析中的哪项功能是最重要的呢?从下图可以看出,排在前三位的功能分别是实时分析(21.32%)、丰富的挖掘模型(17.97%)和可视化界面(15.91%)。2012年也曾做过类似的调查,当时选择丰富的挖掘模型(27.22%)比实时分析(19.88%)多7.34%。短短一年时间内,企业对实时分析的需求激增,成就了很多以实时分析为创新技术的大数据厂商。从调查结果可以看出:企业在未来一两年中有迫切部署大数据的需求,并且已经从一开始的基础设施建设,逐渐发展为对大数据分析和整体大数据解决方案的需求。与此同时,大数据还面临人才的缺乏的挑战,需要企业和高校联合起来,培养数据领域的复合型人才,帮助企业打赢这场“数据战”。
五、大数据的应用
(一)行业拓展者,打造大数据行业基石
IBM:IBM大数据提供的服务包括数据分析,文本分析,蓝色云杉(混搭供电合作的网络平台);业务事件处理;IBM Mashup Center的计量,监测,和商业化服务(MMMS)。 IBM的大数据产品组合中的最新系列产品的InfoSphere bigInsights,基于Apache Hadoop。
该产品组合包括:打包的Apache Hadoop的软件和服务,代号是bigInsights核心,用于开始大数据分析。软件被称为bigsheet,软件目的是帮助从大量数据中轻松、简单、直观的提取、批注相关信息为金融,风险管理,媒体和娱乐等行业量身定做的行业解决方案。
微软:2011年1月与惠普(具体而言是HP数据库综合应用部门) 合作目标是开发了一系列能够提升生产力和提高决策速度的设备。
EMC:EMC 斩获了纽交所和Nasdaq;大数据解决方案已包括40多个产品。
Oracle:Oracle大数据机与Oracle Exalogic中间件云服务器、Oracle Exadata数据库云服务器以及Oracle Exalytics商务智能云服务器一起组成了甲骨文最广泛、高度集成化系统产品组合。
(二)大数据促进了政府职能变革
重视应用大数据技术,盘活各地云计算中心资产:把原来大规模投资产业园、物联网产业园从政绩工程,改造成智慧工程;在安防领域,应用大数据技术,提高应急处置能力和安全防范能力;在民生领域,应用大数据技术,提升服务能力和运作效率,以及个性化的服务,比如医疗、卫生、教育等部门;解决在金融,电信领域等中数据分析的问题:一直得到得极大的重视,但受困于存储能力和计算能力的限制,只局限在交易数型数据的统计分析。一方面大数据的应用促进了政府职能变革,另一方面政府投入将形成示范效应,大大推动大数据的发展。
(三)打造“智慧城市”
美国奥巴马政府在白宫网站发布《大数据研究和发展倡议》,提出“通过收集、处理庞大而复杂的数据信息,从中获得知识和洞见,提升能力,加快科学、工程领域的创新步伐,强化美国国土安全,转变教育和学习模式” ;中国工程院院士邬贺铨说道,“智慧城市是使用智能计算技术使得城市的关键基础设施的组成和服务更智能、互联和有效,随着智慧城市的建设,社会将步入“大数据”时代。”
(四)未来,改变一切
未来,企业会依靠洞悉数据中的信息更加了解自己,也更加了解客户。
数据的再利用:由于在信息价值链中的特殊位置,有些公司可能会收集到大量的数据,但他们并不急需使用也不擅长再次利用这些数据。例如,移动电话运营商手机用户的位置信息来传输电话信号,这对以他们来说,数据只有狭窄的技术用途。但当它被一些发布个性化位置广告服务和促销活动的公司再次利用时,则变得更有价值。
六、机遇和挑战
大数据赋予了我们洞察未来的能力,但同时诸多领域的问题亟待解决,最重要的是每个人的信息都被互联网所记录和保留了下来,并且进行加工和利用,为人所用,而这正是我们所担忧的信息安全隐患!更多的隐私、安全性问题:我们的隐私被二次利用了。多少密码和账号是因为“社交网络”流出去的?
眼下中国互联网热门的话题之一就是互联网实名制问题,我愿意相信这是个好事。毕竟我们如果明着亮出自己的身份,互联网才能对我们的隐私给予更好保护

阅读全文

与麦当劳选址如何运用大数据相关的资料

热点内容
创意编程社区账号在哪里 浏览:377
好用的压缩文件 浏览:538
360下载的补丁包在哪个文件夹 浏览:988
微信54安卓版本官网 浏览:698
为什么cnc编程找工作难 浏览:777
sql数据库端口不通 浏览:361
javaword转swf 浏览:174
cms数据更新是什么 浏览:39
电脑保密柜在文件里怎么找不到了 浏览:225
nodejs前端后端 浏览:129
程序侠后台多少 浏览:32
mysqle执行sql文件在哪里 浏览:466
数据库iostat1 浏览:986
java图片工具包 浏览:159
ps文件损坏出现不兼容情况 浏览:942
为什么iphone耗wifi 浏览:495
网页宽度代码 浏览:144
编程踩坑路01怎么免费用 浏览:612
wps作图教程 浏览:610
华为一汽奥迪app怎么放在桌面 浏览:936

友情链接