导航:首页 > 数据分析 > 如何才能将数据分析的有深度

如何才能将数据分析的有深度

发布时间:2024-05-23 04:57:12

1. 数据分析的方法有哪些

数据分析是指通过统计分析方法对收集到的数据进行分析,将数据加以汇总、理解并消化,通过数据分析可以帮助人们作出判断,根据分析结果采取恰当的对策,常用的数据分析方法如下:

将收集到的数据通过加工、整理和分析的过程,使其转化为信息,通常来说,数据分析常用的方法有列表法和作图法,所谓列表法,就是将数据按一定规律用列表方式表达出来,是记录和处理数据最常用的一种方法;

表格设计应清楚表明对应关系,简洁明了,有利于发现要相关量之间的关系,并且在标题栏中还要注明各个量的名称、符号、数量级和单位等;

而作图法则能够醒目地表达各个物理量间的变化关系,从图线上可以简便求出实验需要的某些结果,一些复杂的函数关系也可以通过一定的变化用图形来表现。

想要了解更多关于数据分析的问题,可以咨询一下CDA认证中心。CDA行业标准由国际范围数据领域的行业专家、学者及知名企业共同制定并每年修订更新,确保了标准的公立性、权威性、前沿性。通过CDA认证考试者可获得CDA中英文认证证书。

2. 数据分析报告有哪些要点

1、确定报告受众和分析目的


无论写什么类型的数据分析报告,都要先搞清楚报告给谁看,不同的受众对一份数据分析报告的期待是不一样的。


2、框架、思路清晰


作为数据分析结论输出最重要的部分,一份优秀的数据分析报告要能够准确体现你的分析思路,让读者充分接收你的信息,所以在制作报告时,框架和思路要清晰。


这里的框架不单指报告的行文逻辑,更多是指数据分析过程的框架,比方说我们拿到一个分析问题,不可能一下子就找到问题背后的原因,需要利用各种手段将问题拆解分析,直到得出最终结论,这时候就可能会用到我们常提到的MECE、PEST、AAARRR等分析框架


3、保障数据准确


写一份报告,获取和整理数据往往会占据 6成以上的时间。要规划数据协调相关部门组织数据采集、导出处理数据,最后才是写报告,如果数据不准确,那分析的结果也没有意义,报告也就失去价值,因此在收集整合数据时需要注意数据是否靠谱,验证数据口径和数据范围。


4、让图表传达更加直接


图与表之间,图与图之间的联系如何阐述,反映出的问题如何表达,这些都是在做数据分析图表就要弄明白的。很多细心的领导及专门会针对你的数据分析以及结论来提问,因为现状和未来是他们最关心的。所以数据图表展现也要体现你的分析思路,而不单单是为了展示数据。

3. 如何进行有效的数据分析

首先,我们要明确数据分析的概念和含义,清楚地理解什么是数据分析;

什么是数据分析呢,浅层面讲就是通过数据,查找其中蕴含的能够反映现实状况的规律。

专业一点讲:数据分析就是适当的统计分析方法对收集来的大量数据进行分析,将他们加以汇总、理解和消化,以求最大化的开发数据的功能,发挥数据的作用。

那么,我们做数据 分析的目的是什么呢?

事实上,数据分析就是为了提取有用的信息和形成结论而对数据加以详细的研究和概括总结的过程。

数据分析可以分为:描述性数据分析、探索性数据分析、验证性数据分析

工作中我们运用数据分析的作用有哪些?

1、现状分析:就是企业运营状况的分析,主要是各项指标的监控以及日报、周报、月报等

2、原因分析:需求分析,多数是针对运营中出现的问题进行剖析,找出出现问题的因素以便于解决问题

3、预测分析:针对以后的运营情况做出分析报告,对公司以后的发展趋势做出有效的预测,对公司的发展目标和策略制定做出有力的支撑。

最重要的一点:

我们如何做数据分析呢,换一句话说就是如何进行数据分析,是怎样的流程?

然后,我们来看数据分析的六部曲

1、明确分析目的和思路:

这一定很重要,你想通过数据分析得到什么,你想通过数据分析告诉别人什么,这是你做数据分析的首要问题,分析不能是漫无目的的,一定要明确思路,有目的性、有计划性的去做数据分析。找好角度、指标、以及分析逻辑尤为重要。

2、数据收集,这里不做过多的说明,一般情况下,数据来源都会可靠有效。我们要做的只是把我们需求的数据get即可。

3、数据处理:

主要包括数据清洗、数据转化、数据提取、数据计算等方法,数据分析的前提是要保证数据质量,如果数据质量无法保证,分析出来的结果也没法得到有效的利用,甚至会对决策者造成误导的行为。

4、数据分析:

首先要明确数据处理和数据分析的区别:数据处理只是数据分析的基础,我们做数据处理就是为了保证数据形式合适,保证数据的一致性和有效性。

5、数据展现:

数据展现就是把数据分析的结果,用可视化的图标形式展现出来,用一种简单易懂的方式表达出你分析的观点

6、撰写报告:

数据分析报告其实就是对整个数据分析过程的一个总结与呈现,通过报告把数据分析的起因、过程、结果及建议完整的呈现出来,供决策者参考。

4. 常用的数据分析方法有哪些


常见的数据分析方法有哪些?
1.趋势分析
当有大量数据时,我们希望更快,更方便地从数据中查找数据信息,这时我们需要使用图形功能。所谓的图形功能就是用EXCEl或其他绘图工具来绘制图形。
趋势分析通常用于长期跟踪核心指标,例如点击率,GMV和活跃用户数。通常,只制作一个简单的数据趋势图,但并不是分析数据趋势图。它必须像上面一样。数据具有那些趋势变化,无论是周期性的,是否存在拐点以及分析背后的原因,还是内部的或外部的。趋势分析的最佳输出是比率,有环比,同比和固定基数比。例如,2017年4月的GDP比3月增加了多少,这是环比关系,该环比关系反映了近期趋势的变化,但具有季节性影响。为了消除季节性因素的影响,引入了同比数据,例如:2017年4月的GDP与2016年4月相比增长了多少,这是同比数据。更好地理解固定基准比率,即固定某个基准点,例如,以2017年1月的数据为基准点,固定基准比率是2017年5月数据与该数据2017年1月之间的比较。
2.对比分析
水平对比度:水平对比度是与自己进行比较。最常见的数据指标是需要与目标值进行比较,以了解我们是否已完成目标;与上个月相比,要了解我们环比的增长情况。
纵向对比:简单来说,就是与其他对比。我们必须与竞争对手进行比较以了解我们在市场上的份额和地位。
许多人可能会说比较分析听起来很简单。让我举一个例子。有一个电子商务公司的登录页面。昨天的PV是5000。您如何看待此类数据?您不会有任何感觉。如果此签到页面的平均PV为10,000,则意味着昨天有一个主要问题。如果签到页面的平均PV为2000,则昨天有一个跳跃。数据只能通过比较才有意义。
3.象限分析
根据不同的数据,每个比较对象分为4个象限。如果将IQ和EQ划分,则可以将其划分为两个维度和四个象限,每个人都有自己的象限。一般来说,智商保证一个人的下限,情商提高一个人的上限。
说一个象限分析方法的例子,在实际工作中使用过:通常,p2p产品的注册用户由第三方渠道主导。如果您可以根据流量来源的质量和数量划分四个象限,然后选择一个固定的时间点,比较每个渠道的流量成本效果,则该质量可以用作保留的总金额的维度为标准。对于高质量和高数量的通道,继续增加引入高质量和低数量的通道,低质量和低数量的通过,低质量和高数量的尝试策略和要求,例如象限分析可以让我们比较和分析时间以获得非常直观和快速的结果。
4.交叉分析
比较分析包括水平和垂直比较。如果要同时比较水平和垂直方向,则可以使用交叉分析方法。交叉分析方法是从多个维度交叉显示数据,并从多个角度执行组合分析。
分析应用程序数据时,通常分为iOS和Android。
交叉分析的主要功能是从多个维度细分数据并找到最相关的维度,以探究数据更改的原因。

5. 如何进行数据分析

  1. 收集数据

数据分析师的工作第一步就是收集数据,如果是内部数据,可以用SQL进行取数,如果是要获取外部数据,数据的可靠真实性和全面性其实很难保证。

2. 数据清洗

数据清洗是整个数据分析过程中不可缺少的一个环节,其结果质量直接关系到模型效果和最终结论。在实际操作中,数据清洗通常会占据分析过程的50%—80%的时间。需要进行处理的数据大概分成以下几种:缺失值、重复值、异常值和数据类型有误的数据。

3. 数据可视化

是为了准确且高效、精简而全面地传递出数据带来的信息和知识。可视化能将不可见的数据现象转化为可见的图形符号,能将错综复杂、看起来没法解释和关联的数据,建立起联系和关联,发现规律和特征,获得更有商业价值的洞见和价值。在利用了合适的图表后,直截了当且清晰而直观地表达出来,实现了让数据说话的目的。

4. 数据方向建设和规划

不同行业和领域的侧重点是不同的,可以是商业策略,也可以是市场营销,是不固定的,要依据公司的战略发展走。

5. 数据报告展示

数据分析师作为业务与IT的桥梁,与业务的需求沟通是其实是数据分析师每日工作的重中之重。在明确了分析方向之后,能够让数据分析师的分析更有针对性。如果没和业务沟通好,数据分析师就开始撸起袖子干活了,往往会是白做了。最后结果的汇总体现也非常重要,不管是PPT、邮件还是监控看板,选择最合适的展示手段,将分析结果展示给业务团队。

6. 企业如何有效地进行数据挖掘和分析

经常听人提到数据分析,那么数据怎么去分析?简单来说,就是针对一些数据做统计、可视化、文字结论等。但是相比来说,数据挖掘就相对来说比较低调一些,这种低调,反而意味着数据挖掘对研究人员的要求要更高一些。
要想将制造数据的价值真正挖掘出来,做到最大化的有用且高效,可从以下三个方面来计划: 第一步:明确数据采集的源头,需要对内部现有的仪器设备做一个全面的排查,明确数据采集的时间频率、采集的关键信息点、控制图分析类型、控制指标、异常处理等信息。
第二步:明确数据的可用性,同时,确保生产制程的稳定性。用于制订长期战略决策的数据,必须从长期的维度来挖掘、分析数据,找到最关键的数字趋势,突出值得关注的信息。
第三步:数据价值的衡量指标,对于收集的数据,有哪些衡量指标?这些指标对自上而下和

想要学习了解更多数据挖掘的信息,推荐CDA数据分析师课程。“CDA 数据分析师认证”是一套科学化,专业化,国际化的人才考核标准,涉及行业包括互联网、金融、咨询、电信、零 售、医疗、旅游等,涉及岗位包括大数据、数据析、市场、产品、运营、咨询、投资、研发等。点击预约免费试听课。

7. 如何做好数据分析

数据分析有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。

01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。

02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。

03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。

04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。

05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。

06) 趋势分析
比如人才流失率过去12个月的变化趋势。

07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。

8. 我们如何提升自己的数据策略分析能力

很多同学抱怨:每天对着大堆数字,却看不出个名堂。反而有些做业务的人,看几个数字就能马上做出准确判断。咋回事!看着数据没有感觉,是缺少数据洞察力的表现。数据洞察力和操作工具没有关系,完全是一种思维习惯。建立起来以后,不单单对工作有帮助,在生活中用处也很大,今天我们系统讲解下。
1
直观感受下啥叫数据策略分析能力
数字本身没有啥含义,数字+业务场景,才有了具体业务含义。注意,第一张图上的小帅哥会暴走,并不是因为姑娘180身高,而是因为姑娘180把他比得太矮了(且因此受过嘲讽)。“比”才是问题的关键。所以数据本身不形成判断,数据+标准才能形成判断。想读懂数据的含义,一定得看具体业务场景下,业务判断的标准是什么(如下图)。
有了数据、业务场景、判断标准,我们才能形成基本的数据洞察。这三者缺一不可。少了数据,就会陷入:“我看到一个黑苹果,所以全天下苹果都是黑色的”这种窘境。少了业务场景,就会出现:“一个女人十个月生娃,十个女人一个月就能生出来吧”这种糗事。少了判断标准,就会鸡同鸭讲,大家扯了半天,发现说的“好/坏”根本不是一类。
2
培养洞察力的基本思路
既然洞察力来自数据、业务场景、判断标准的组合,培养洞察力,也是从这三个方向出发,包括:
遇事找数据细致了解业务场景清晰判断标准积累特定场景下,数据判断的结论在新场景中使用结论,检验效果持续积累正确结论,修正错误结论
这一段话看起来很官方,可实际操作起来非常简单,并且我们每个人、每天都在实践。就比如找对象,懵懂的小男生都是挑剔热巴太胖、幂幂头秃,幻想自己找个仙女下凡。可真自己约会相亲追过几个女生,就发现“哦,原来现实中找个美女那么难呀!”
然后真找个“美女”相处一段时间,就发现比起长相,性格、爱好、生活能力、工作能力哪个都更重要。半夜,小哥一个人独自抽着烟,对着月亮,思考:“为毛我要花钱花力气请个姑奶奶回来伺候,我欠抽吗!”的时候,他的洞察力就有了质的飞跃。即使以后再看到漂亮小姑娘,他也会立即明白:这不是我的菜!
在现实生活中,制约洞察力的关键,往往是数据。因为生活中信息不对称问题严重,收集数据的难度太高,还要付出时间、金钱甚至前途、未来这种高额成本。所以在生活中,我们常采用的是有限理性的策略。在可行范围内,尽量用少的数据做决策。或者干脆采用跟随策略,跟着那些比我们优秀的人混。但在企业里,则是完全不同的另一幅场景。
3
培养数据洞察力的难点
在企业工作中,培养数据洞察力最大的难点,是数据、业务场景、标准三者是相互分离的。
做数据分析的同学们不了解业务场景,只能对着数据瞎猜;业务部门的人自己稀里糊涂,或者各怀鬼胎,故意扭曲判断标准;对数据重视度不够,基础数据采集不全,遇到事都喜欢讲个案,不看数据全貌;
这些糟糕状况,都会导致做数据分析的同学们很难积累经验。于是我们常常发现,企业里最有洞察力的人往往是老板。因为在老板那里这三者是透明的,所以即使不操作基础数据,他老人家也能明察秋毫。但这对数据分析师可不是件好事。因为老板还等着我们给意见呢,事事都让老板跑在我们前边,会引发不满的。所以做数据的同学们还是得自己锻炼下洞察力。
4
培养数据洞察力的步骤
很多同学一说要提升洞察力,最喜欢干这三件事:
找《XX行业2020-2025全景洞察报告(重磅深度!)》找XX行业数据指标体系思维导图,挑个最密密麻麻的保存在D盘-干货文件夹加各种数据分析群,问:“有没有牛X的数据分析报告看看,有洞察那种,发来看看”
这三种方法完全没用。这就像一个想谈恋爱的小伙,每天在网上看美女图片一样,自己不动手练,不具体思考,是不可能提升洞察力的。永远不动,永远不会。得想办法自己动手才行。而且往往这些东西内容太多,最后保存在D盘的玩意,你也永远不会看。所以最好从一个具体小点出发。
第一步:从一个场景一个指标开始
做数据的同学,优势在于手上有数据,可以随时查。劣势在于不了解业务场景。因此把数据结合到业务场景中,是破题的关键。最好找一个自己熟悉的业务,有好朋友的部门入手。从理解结果指标开始(如下图)。
第二步:从极值到中间值
理解了指标业务含义,想要形成判断,可以从白犀牛开始——先看指标极大、极小值的时候。这些情况是什么场景,发生什么问题,有什么应对。有了对极值的了解,就行掌握基础的判断标准,也能积累分析假设和分析逻辑。当遇到没有那么极端的情况时,可以顺着已经积累的分析逻辑去理解。实在解读不了,也可以选择再观察观察,看看数据往哪个极端方向发展(如下图)。
第三步:从静态到动态
当我们对静态场景积累的足够的洞察的时候,就能解读动态场景。本质上,动态场景只是一系列静态场景的合集。要额外提醒的是:一个业务变化往往有规律性。一个连续的规律,本身是具有业务含义的。积累周期形态的规律,可以从点到线,提升洞察能力。
第四步:从单指标到多指标
对单指标有了洞察积累,可以往多指标扩展,掌握了结果指标的判断,可以联系过程指标一起看。注意:多指标不是单指标的堆积,拼在一起的时候,也不是每个指标越多越好的。多指标组合时,在特定业务场景下会形成特定的形态,基于形态的解读能做出更准确的判断(如下图)。
掌握了基础形态,后续还能持续观察形态变化,积累更多经验,这样就慢慢能由简入繁,越来越多积累经验,积累多了自然能举一反三了。
要注意的是,换个行业,换个公司,换个产品,换个发展阶段,具体场景都会变化。所以企图追求“万古不变的数据分析真理”,只会让自己在玄学道路上越走越远。想提升洞察力,就多多积累具体场景碎片,提升具体分析能力。具体问题,具体分析,这句话永远不过时。

9. 数据分析的分析方法有哪些

数据分析的分析方法有:

1、列表法

将数据按一定规律用列表方式表达出来,是记录和处理最常用的方法。表格的设计要求对应关系清楚,简单明了,有利于发现相关量之间的相关关系;此外还要求在标题栏中注明各个量的名称、符号、数量级和单位等:根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。

2、作图法

作图法可以最醒目地表达各个物理量间的变化关系。从图线上可以简便求出实验需要的某些结果,还可以把某些复杂的函数关系,通过一定的变换用图形表示出来。

图表和图形的生成方式主要有两种:手动制表和用程序自动生成,其中用程序制表是通过相应的软件,例如SPSS、Excel、MATLAB等。将调查的数据输入程序中,通过对这些软件进行操作,得出最后结果,结果可以用图表或者图形的方式表现出来。

图形和图表可以直接反映出调研结果,这样大大节省了设计师的时间,帮助设计者们更好地分析和预测市场所需要的产品,为进一步的设计做铺垫。同时这些分析形式也运用在产品销售统计中,这样可以直观地给出最近的产品销售情况,并可以及时地分析和预测未来的市场销售情况等。所以数据分析法在工业设计中运用非常广泛,而且是极为重要的。

(9)如何才能将数据分析的有深度扩展阅读:

数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。

数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。

阅读全文

与如何才能将数据分析的有深度相关的资料

热点内容
编程数据库英文叫什么 浏览:587
2016苹果游戏app排行榜 浏览:866
原子随身听支持哪些app 浏览:660
微信卖的沃颜面膜好吗 浏览:845
linuxnslookup反向解析 浏览:725
lumia1320能升级win10 浏览:482
php数据类型哪个不是标量类型 浏览:66
u盘启动盘文件bootini 浏览:552
ai绘制胶卷的图文教程 浏览:806
qq群文件夹删除 浏览:69
同花顺app怎么恢复默认设置 浏览:895
wpslinux命令 浏览:231
苹果和小米如何数据转移 浏览:982
反诈app的原理是什么 浏览:921
兴趣班编程是什么东西 浏览:387
git比较文件内容命令 浏览:890
模型拟合优度看哪个值面板数据 浏览:683
为什么ai文件下面有ps的角标 浏览:813
数据如何传到电脑 浏览:698
linux单用户维护模式 浏览:761

友情链接