Ⅰ 浅析零售业大数据构成要素
浅析零售业大数据构成要素
马云说人类社会已经从IT(信息技术)时代进入DT(数据技术)时代,《大数据时代》一书的大卖也昭示了大数据的重要性。各个行业都在研究大数据对自己行业的变革,作为精益零售研究工作者,我也来浅析一下零售业的大数据构成要素。
一、大数据的对象包括企业内部信息与外部信息
外部信息主要指的是市场信息、流行趋势、厂商信息、消费结构的变化、政策与制度改变、新商品新技术的革新等;
内部信息主要指的是POS信息、商品销售动向、顾客信息、竞争对手信息、公司的方针与指示、门店所在楼盘相关信息、销售额与利润的分析、门店周边商圈分析等。
二、大数据使用者应该普及到所有基层员工
大数据不只是给企业高层经营分析用的,而是要普及到公司所有一线员工,包括订货、配货、采购、物流、人事、财务等所有的基层员工,他们在做业务决策时如何通过大数据提高预测的准确性。
三、大数据应该是业务过程分析而不是财务结果分析
企业目前使用的BI系统大多是面向财务结果的分析系统,主要是企业高层分析财务指标用的,而大数据应该是面向业务过程分析,即贯穿于企业各职能部门的业务主线,在日常工作中就要活用大数据,如商品部与营运部每天都要分析商品构成评价、商品动向分析、ABC分析、趋势分析、矩阵分析、商品动向的地区间对比分析、滞销商品分析、新品与重点商品的销售分析等等。通过每日分析就能及时发现问题所在,迅速调整经营决策。
四、大数据更强调的是业务模型而非技术本身
目前国内BI(一般称为商业智能)系统应用好的企业远低于ERP的应用,原因并非BI技术架构的问题,而是业务模型不知道如何建立,业务部门也很难说清楚他们要什么样的报表才是业务最优的报表,而IT技术构建者是很难理解业务模型的。对比日本与中国BI分析系统的特点,中国企业的领导者喜欢看类似于仪表盘、驾驶舱的很炫的界面,最好还要有智能报警器,而日本企业只看二维的数据表格,数据很枯燥,但却很实用。
五、日本广泛在用的零售业大数据分析系统
日本零售业到底在用什么样的大数据分析系统?最核心的有三点:1、一定要有销售计划或预算系统:通过预算的销售额、毛利、折扣率、来客数与实际结果的对比,找出差异并分析原因,从而修正下一次计划,日益精进,最终目的是提高计划的精确性,从而在商品开发、生产、物流配送时就能精确地分配资源,不浪费,这也是精益零售的核心;2、一定是定型分析而非自由分析:中国的BI系统强调工具的灵活性与强大,可以让企业自由拖拽,其结果分导致各业务部门拉出来的数据差异较大,无法形成统一的数据语言,而日本BI系统强调的是定型分析,将各业务部门要分析的报表固定成统一的报表格式,这样每周开经营分析会议时各业务部门的数据就完全统一了;3、非结构化数据比结构化数据重要:结构化数据指的是ERP系统中能看到的信息,而非结构化数据来自于员工每一次假设-验证后形成的经验信息,相当于是员工经常试错后的日志记录,这样的日志一定要记入系统,等来年同比时作为重要的参考信息,举例来说,在做周同比分析时,某门店附近学校运动会去年与今年的春季运动会并不在同一周举行,则同比分析时就要找出举办运动会的不同周数去对比。这个现象也能解释一个问题:为什么一家优秀的门店店长去了别的门店当店长后,业绩不升反降,原因是这个优秀的店长不了解新门店的过去的试错经验,也就是说门店的知识沉淀工作不充分,知识都被原来的店长记在大脑里带走了,没有沉淀到IT系统中去。而市面上常见的KM知识管理系统流于形式变成OA办公系统了,最好的做法是把日志信息记录到POS系统里面,作为门店的知识管理系统。
以上是小编为大家分享的关于浅析零售业大数据构成要素的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅱ 大数据与更好的零售
大数据与更好的零售
叙说起来零售历史经历了几个比较稳定的时期,但当中穿插了一些拐点或者说是——颠覆性改变。这些改变的核心无一例外都是数据:
首先,上世纪七八十年代EPOS的出现在品类管理发展中扮演了重要角色;
其次,在随后的90年代零售商的忠诚度计划或会员卡计划创造了一个完全基于顾客洞察更好决策的营销行业,美国的克罗格(Kroger)和英国的乐购(Tesco)在这方面引领全球零售行业;
第三,也是最近,电子商务革命为零售商提供了以前不可能获得的数据及洞察——是关于顾客决策方面的。通过使用点击流数据(Clickstream),在大多数时候,顾客是可以识别的,那么品类就能了解当我买了产品C,我其实也看了产品A和产品B——这对销售周期慢的行业来说是巨大的突破。另外,全渠道零售及社交媒体开辟了一个新的时代,让顾客能够占有大量的信息去比较产品、服务及价格——即使他们可能最终还是在实体店购买。再一次,一个完全的行业出现了——通过顾客再定向(retargeting)技术及推荐引擎——电子商务可以做出实时的商业决策。
在21世纪的前几年,大数据这个术语被用来描述整套新概念,比如很多的记录(长数据)、很多的维度(宽数据)、文本或图片(非结构化的数据)、实时或准实时(near real-time)。科技及社交媒体发展引发的大数据爆炸为零售商及品牌商提供了更多与顾客保持高度链接与做大生意的方式与方法。
所有零售的核心是为顾客创造更好的价值主张:无论它是为顾客省钱提供更低的定价,还是更与顾客相关的选品,更好的顾客服务,更有效的促销,或者是更有效率的运营及配送等。
正因为有太多的新技术产生数据,有太多的新数据源,所以零售商必须要有一个框架去理解这些数据:购物之旅模型(the Shopping Trip Model)。购物之旅模型定义了产生数据的所有顾客触点(touch point)以及触点发生的场景(比如搜索、到访/逛店、货架取货、支付、使用等等)。这样,任何新的数据概念都会被理解为某些触点的一个函数,有很多的触点并且每一个触点都会产生多种数据集。
举例来说:
模型中的逛店(线上或线下)——就是指顾客在网站、在APP或者在实体店浏览的那些时刻里发生的行为。特别地,若是在实体门店,新兴科技可以让零售商了解顾客在门店里怎样逛,以及他们如何最终找到他们想找的商品。机场、酒店及餐馆的WIFI应用相当普遍,在中国,门店里WIFI 的应用也开始逐渐普及。这却可能改变—最终的胜者可能是这样一些数据收集技术——可能是beacon或其他基于蓝牙技术的解决方案。无论谁将在技术上获得统治地位,数据的机会依然一样——只要具备了解顾客逗留时间及路径的能力。如果能将逛店洞察通过顾客唯一识别码(customer identifiable token)(如同自动登录的APP)与取货及支付等行为链接并分析,这将为零售商带来真正的商业转型。
那么,这些数据到底怎样落地并帮助零售商呢?以往的做法通常是,零售商给顾客打各种各样的标签(推断或直接收集描述个人财富状况、家庭状况、购物行为等的数据)。然而,这只是管中窥豹。要让数据能被实时使用,有必要在时间、地点及商品或品类等方面进行加强。
顾客可能对豆子价格敏感但却愿意花很多钱在护肤品上。一个上海的顾客可能周一到周五都在快节奏地工作但到周末会带家人去购物中心度个休闲的周末,喜欢从容不迫地购物,所以,该顾客应该在那天受到特别对待。想想你该如何告诉门店导购使用顾客洞察。
未来五年,使用多种数据源来多维度了解顾客将会是零售业的标准实践。那些取得大数据竞争优势的公司将会是那些能在各种场景下准确描述顾客的公司。一旦拥有数据,差异化和个性化的可能性就只能是受制于该公司的想象力及基于顾客洞察的执行力。
千店千面或门店差异化(提供不同的促销、个性化的定价、差异化的商品组合或者品牌体验等等)给物流和运营带来巨大的挑战。未来几年,会有零售商因为拥有数据能力从而可以为顾客提供个性化的购物体验,但是却缺乏运营能力来实施数据分析建议作出的改变。实际上,哪怕在今天,很多门店都知道调整一下晚上的选品就会有更好的销售——商品调整的实施限制不在于能指导调整的数据洞察,而是在于货架、场地空间或库存控制等运营因素。与投资于数据同样重要的是需要将门店智能化——让门店能实时了解库存状况(可能是通过RFID)、物理属性(温度、照明、湿度等等)、门店员工(位置、语言、专长等)以及更为重要的到店顾客(画像、购物偏好等等)。通过数据把“人(顾客)”和“场(门店)”链接就能为顾客提供个性化的购物体验,从而差异化门店,无论是线上还是线下。
以上是小编为大家分享的关于大数据与更好的零售的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅲ 传统零售业运用大数据思维的四大要点
传统零售业运用大数据思维的四大要点
大数据不是一天冒出来的,不管是统计学还是模糊数学,做生意的人对概率是有心中有数的——什么时间什么地点投什么样的广告差不多带来多少收益他们明明白白清清楚楚的,他们更厉害的人,通过营造环境氛围及训练员工专业度热情度来提高成交的概率,有的特厉害的,只要进来人,就不会让人空手走出去。那为什么这么厉害在大数据面前就败得一塌糊涂了呢?我们先不揣测终端零售商对概率背后的“规律”进行分析的不够,只逻辑倒推一下,想清楚几个问题:
1、消费者从哪来的?
是自然流量?
是借助大商场大商超?
商超是怎么聚人气的?
选择什么样的地点才是科学的?
和您做同一品类商品的,哪家比您好?人家是怎么吸引消费者的?
2、每日销售数据是记账用的,还是反馈到设计及生产部门?
各个商品品类数据细化到什么程度?有没有分析?
从数据是否能看出单店和全国各店所有单品排行情况?
根据排行情况,区域销售走势,如果放到全年里是什么情况?如果放到若干年里,有什么规律,波浪线的趋势是什么样的?
3、产品是厂家生产的,是消费者需求拉动生产的,还是厂家设计人员创造了需求?
您是掌控了设计和终端渠道,还是只是销售终端的售卖机器?还是从批发或是代理那拿货?
您的企业移动互联上展示的是什么内容?是否引导挖掘消费者潜在的需求,从而设计开发系列主题产品,在批量生产的情况下满足消费者的个性化需求?
在灵活反应上,您的新品从设计到生产再到消费者手中时间是一周是半个月?
如何让所有商品在工业信息化时代都实现“前店后厂”那样新鲜?
4、利益分配上是共享还是垄断?
每售卖出一个单品,设计者、生产线上工人、终端消费员,厂家、代理商是否利益都挂钩了?
不管是线上推广线下体现后然后在线上购买,还是直接线上购买,还是线下传统售卖,线上线下数据同步的同时,如何各方利益照顾得到且起到竞争作用?
总之,解决了上述问题,传统零售业的冬天也有梅花怒放燃烧的迎春红!
以上是小编为大家分享的关于传统零售业运用大数据思维的四大要点的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅳ 零售业拥抱大数据:用数据读懂消费者
零售业拥抱大数据:用数据读懂消费者
在过去一年,"大数据"的概念持续加温,热度已经覆盖除互联网以外的各个行业。关于大数据的概念已经无需再多说,大数据不仅仅是“看起来很美”,如何有效运用大数据创造商机,让大数据更好的发挥其自身的价值,为企业带来更多的效益,成为了各个企业亟待解决的问题。
大数据的起源要归功于互联网与电子商务,但大数据最大的应用前景却在传统产业。一是因为几乎所有传统产业都在互联网化,二是因为传统产业仍然占据了国家GDP的绝大部分份额。
具体来讲,中国最需要大数据服务的行业就是受互联网冲击最大的产业,首先是线下零售业,其次是金融业。受电商的冲击,国内很多零售巨头都增长严重放缓,甚至遭遇负增长,线下零售已经到了不得不变革的危机关头。我们看到银泰百货、王府井百货、万达集团这些具有创新意识的传统巨头开始利用互联网和大数据来改造线下商业。坐拥成百上千门店的传统零售企业,该如何面对迅速兴起的互联网战场?拥有海量会员信息和购买记录的传统零售企业,在逐渐变革的消费市场中如何利用数据优势迅速抢占市场?
在所有的零售渠道中,实体店占据着绝大多数的市场份额,但是线上渠道的吸引力在迅速增强,并且以中国消费者尤为突出。随着线上线下购物逐步融为一体,生存和成功将取决于零售商通过各种渠道接触到消费者的能力,更重要的是其为消费者提供多渠道的无缝连接购物体验的能力。如今掌握主动权的消费者希望能同时享受线上线下两种渠道的优点,并将会到那些能够提供优异的多渠道购物体验的零售商那里购物。
如何建立一个线上线下无缝连接的品牌和购物体验方便消费者的选择,从而赢得顾客的忠诚度和持久的客户关系?这些曾经棘手的问题,如今都迎刃而解。国内大数据技术服务商百分点推出的大数据管理平台(BigDataManagement,以下简称“BDM”)通过整合第一、二、三方的用户数据,对数据进行清洗、加工和建模,为企业的战略、运营、管理、市场、营销等提供各种数据产品和应用。传统零售业拥有海量数据。每天,每笔交易、每个订单、每次促销、都会产生无数的数据。一个值得关注的现状是,目前大部分的企业还没有将这个数据利用起来。这些数据的整合和解读将是企业无形的资产,并成为企业最大的优势,帮助传统零售企业在瞬息万变的互联网市场迅速抢占一席之地。
那么,零售商们应该如何将大数据运用到商业活动中呢?来看看百分点是如何描绘的。
A用户是一位标准的摄影发烧友,我们知道他最常浏览的网站就是“摄影爱好者论坛”。某天当A用户打开一个网站准备浏览今天的新闻,却被相机厂商发布在网站首页的广告迅速的吸引。A用户发现正是他关注的“新款镜头”,于是A用户决定去实体店看看。是的,百分点BDM通过A用户的浏览习惯等知道他是个理智型消费者”。
当A用户来到实体店时,一场数字化旅程即将开始。作为某商城的会员,A用户用商城会员卡买了咖啡,发现购物小票上显示“会员今日购买数码类产品享受9.0折优惠。登陆该商城免费的Wi-Fi时,A用户又收到商城推送的个性化推荐信息“最新款镜头,今日购买可低价换购相机包”。最终,A用户以优惠的价格买下了心仪已久的“最新款镜头”,并得到了“x商城”低价换购的“相机包”。
在上面的故事中,“摄影爱好者论坛”、“相机厂商”、“网站”、“商城”都是百分点大数据家族的一员。百分点BDM收集社交媒体、论坛和第三方的海量数据,并加以分析整合,宏观用户画像显示“85%的消费者在购买单反之后的两年内会购买镜头。”
以上只是百分点BDM对用户分群、画像,并将这些信息利用到商业活动中的举例。事实上,98%的中国消费者希望零售商能够利用他们掌握的信息提供个性化的促销和建议。在这个领域中,百分点关注两方面的内容,一是将线上线下数据的打通,为用户提供一致的购物体验;二是将电商的经验运用到传统卖场,为他们提供新的营销手段。
百分点BMD通过对海量数据的整合和解读更好地了解和预测消费者行为,掌握消费者偏好和需求甚至终生客户价值,以便把握住全新的促销机会,为他们提供更多个性化的产品和服务。通过融合多方数据,零售商为消费者提供创新的购物体验,促进消费者的品牌忠诚度和重复购买,进一步实现零售商的利润和市场份额的增长。
作为大数据服务商百分点一直致力于大数据的技术的研发和应用。百分点利用大数据分析技术为用户画像,以及利用用户画像来帮助企业实现个性化服务。在任何一门生意中,能够读懂用户并分析用户数据来预见未来都是行之有效的,这也是未来商业创新发展的必由之路。
以上是小编为大家分享的关于零售业拥抱大数据:用数据读懂消费者的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅳ 8个典型案例看懂零售巨头的“大数据”战略
8个典型案例看懂零售巨头的“大数据”战略_数据分析师考试
未来的零售分析要求零售商借助集成式业务流程和信息系统,为客户洞察提供支持,将客户洞察发展成一种企业级的战略能力,并根植于企业结构和企业文化中。在这种形势下,零售商的所有业务职能部门在制定决策时,将把基于情景的客户洞察作为一个重要依据。
分析公司 EKN 认为,为了真正实现以客户为中心,零售商需要具备多项关键能力,而这些能力均由业务分析驱动。
全渠道集成。如果缺乏相关客户洞察支持与客户的互动,零售商将无法实现跨渠道无缝客户体验。零售商与客户互动的联络点能为零售商提供丰富的客户数据,因此,所有联络点也成为了零售商的最佳竞争利器。
个性化互动。与网上零售商相比,实体零售商具有两大优势:能与客户进行个人接触,以及拥有更丰富的历史记录和更多样的客户数据。如今,“个性化”购物体验已成为人们津津乐道的话题,而如何巧妙地结合上述两大优势,即在行动中及时交付客户洞察,将成为零售商打造“个性化”购物体验的基础。
持续的卓越运营。客户洞察的应用并非仅局限于面向客户的使用案例。事实上,如果零售商已经能够在各个运营职能部门中更成熟地运用分析功能,那么集成客户洞察便是他们不容错过的增量机会。
零售商用例
销售
瑞士零售商 Globus 使用大数据内存计算和高级分析来获取宝贵的销售绩效洞察。目前,他们能够实时处理海量的产品数据,并在几分钟内分析不同时间范围、店铺和区域内数千种产品的销售模式与促销活动。该零售商还向其管理人员提供了这些洞察的访问权限,以便他们能够更迅速地响应市场状况。
美国零售商 Guess 使用高级分析向其高管提供畅销产品和可用库存的实时视图。该零售商的分析解决方案基于大型客户数据集,分析销售额、细分目标客户,并策划促销活动。
市场营销
沃尔玛的 Global.com 部门充分利用“快速的大数据”和社交分析,快速识别不断变化的客户喜好。该零售商的社交意识(Social Sense)项目能通过社交媒体确定商品的畅销程度,并帮助顾客发掘潜在需求和感兴趣的新产品。同时,借助 ShoppyCat 工具,他们可根据 Facebook 用户的爱好和兴趣,为这些用户推荐适合的产品。此外,Global.com 还使用社交基因组(Social Genome)技术,来帮助客户为朋友挑选礼物。
塔吉特(Target)百货公司利用预测分析程序,来推断个体消费者是否具备成为该公司特定营销活动优质客户的特质。他们给每位顾客分配了一个独一无二的客户识别号码。该号码将客户个人信息、购物行为和喜好整合到一个可跟踪的实体内。塔吉特还专门成立了一个客户营销分析部门,致力于全面了解客户,超越其他竞争对手,从而获得竞争优势。借助动态数据仓库(Active Data Warehouse),塔吉特可在整个企业的混合工作负载环境下,基于海量数据管理复杂的用户查询。
全渠道
英国零售商巴宝莉(Burberry)集成了旗下所有渠道,包括实体店、网上商店、移动终端以及各大社交网站。他们采用了创新技术和数据分析,用于分析来自所有数据源的数据,旨在实时识别个人客户并建立客户档案。相比过去,巴宝莉的分析速度提高了 14,000 倍,以前需要 5 个小时的请求,现在 1 秒就能完成。不论店员处于什么位置,他们都能在客户踏入店内时立即识别客户信息,了解他们过去的购买记录,并提供个性化建议。
韩国零售商 NS Shopping 将移动渠道和社交渠道集成到零售环境中,并利用大数据分析,实时、集中地获取所有渠道的客户和产品数据。而公司的电子商务团队和市场营销团队将利用这些数据,向顾客提供个性化的产品建议。
供应链
美国网上零售商亚马逊基于非平稳随机模型,构建了全新的供应链流程和系统。该方法能为订单履行、寻源、产能和库存决策提供鼎力支持。亚马逊不仅开发了联合和协调补货的新算法,还基于历史需求、活动记录和计划、各履行中心的预测结果、库存计划、采购周期以及采购订单,在 SKU 级别实施了全新的国家预测方案。
英国零售商乐购(Tesco)采用先进的建模工具,基于历史销售数据模拟配送仓库的运作,从而达到优化库存的目的。该零售商还组建了一个内部分析团队,该团队主要负责通过回归测试掌握各要素之间的关联,如天气数据、特价优惠,及销售模式等等。
以上是小编为大家分享的关于8个典型案例看懂零售巨头的“大数据”战略的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅵ 大数据如何与零售业结合 在实战中应用
大数据如何与零售业结合 在实战中应用
一、“大数据”的商业价值
1、对顾客群体细分
“大数据”可以对顾客群体细分,然后对每个群体量体裁衣般的采取独特的行动。瞄准特定的顾客群体来进行营销和服务是商家一直以来的追求。云存储的海量数据和“大数据”的分析技术使得对消费者的实时和极端的细分有了成本效率极高的可能。
2、模拟实境
运用“大数据”模拟实境,发掘新的需求和提高投入的回报率。现在越来越多的产品中都装有传感器,汽车和智能手机的普及使得可收集数据呈现爆炸性增长。Blog、Twitter、Facebook和微博等社交网络也在产生着海量的数据。
云计算和“大数据”分析技术使得商家可以在成本效率较高的情况下,实时地把这些数据连同交易行为的数据进行储存和分析。交易过程、产品使用和人类行为都可以数据化。“大数据”技术可以把这些数据整合起来进行数据挖掘,从而在某些情况下通过模型模拟来判断不同变量(比如不同地区不同促销方案)的情况下何种方案投入回报最高。
3、提高投入回报率
提高“大数据”成果在各相关部门的分享程度,提高整个管理链条和产业链条的投入回报率。“大数据”能力强的部门可以通过云计算、互联网和内部搜索引擎把”大数据”成果和“大数据”能力比较薄弱的部门分享,帮助他们利用“大数据”创造商业价值。
4、数据存储空间出租
企业和个人有着海量信息存储的需求,只有将数据妥善存储,才有可能进一步挖掘其潜在价值。具体而言,这块业务模式又可以细分为针对个人文件存储和针对企业用户两大类。主要是通过易于使用的API,用户可以方便地将各种数据对象放在云端,然后再像使用水、电一样按用量收费。目前已有多个公司推出相应服务,如亚马逊、网易、诺基亚等。运营商也推出了相应的服务,如中国移动的彩云业务。
5、管理客户关系
客户管理应用的目的是根据客户的属性(包括自然属性和行为属性),从不同角度深层次分析客户、了解客户,以此增加新的客户、提高客户的忠诚度、降低客户流失率、提高客户消费等。 对中小客户来说,专门的CRM显然大而贵。不少中小商家将飞信作为初级CRM来使用。比如把老客户加到飞信群里,在群朋友圈里发布新产品预告、特价销售通知,完成售前售后服务等。
6、个性化精准推荐
在运营商内部,根据用户喜好推荐各类业务或应用是常见的,比如应用商店软件推荐、IPTV视频节目推荐等,而通过关联算法、文本摘要抽取、情感分析等智能分析算法后,可以将之延伸到商用化服务,利用数据挖掘技术帮助客户进行精准营销,今后盈利可以来自于客户增值部分的分成。
以日常的“垃圾短信”为例,信息并不都是“垃圾”,因为收到的人并不需要而被视为垃圾。通过用户行为数据进行分析后,可以给需要的人发送需要的信息,这样“垃圾短信”就成了有价值的信息。在日本的麦当劳,用户在手机上下载优惠券,再去餐厅用运营商DoCoMo的手机钱包优惠支付。运营商和麦当劳搜集相关消费信息,例如经常买什么汉堡,去哪个店消费,消费频次多少,然后精准推送优惠券给用户。
7、数据搜索
数据搜索是一个并不新鲜的应用,随着“大数据”时代的到来,实时性、全范围搜索的需求也就变得越来越强烈。我们需要能搜索各种社交网络、用户行为等数据。其商业应用价值是将实时的数据处理与分析和广告联系起来,即实时广告业务和应用内移动广告的社交服务。
运营商掌握的用户网上行为信息,使得所获取的数据“具备更全面维度”,更具商业价值。典型应用如中国移动的“盘古搜索”。
二、“大数据”与零售业的结合运用
对于数据的使用,许多实体零售商同样表示非常重视,他们对企业积累的数据进行了各种预测和分析。然而,对具体的销售业务来说,往往存在理想与现实的纠结,前不久市场中一家知名的服装零售企业一方面在宣传盈利上市的同时,一方面曝出有近10亿元的库存。国内很多零售企业都知道“大数据”应用的好处,但他们一旦将“大数据”的应用结合到自己的企业经营中时,便会出现与目前经营有非常大的不适应问题,如此导致许多企业对此都持非常谨慎的态度。
1、将零售策略与“大数据”技术进行结合
零售企业谈的“大数据”的最大价值,是在零售策略上与“大数据”技术进行结合,最大程度地编制前置性的零售策略,确保销售计划的实现。“大数据”讲究四个“V”:一是数据体量大(Volume);二是数据类型复杂(Variety),多涉及到各种结构性与非结构性的;三是价值密度低(Value),这和体量大是相对应的;四是数据更新与处理速度快(Velocity)。
根据这些特性主动地在业务数据产生的同时做出相应的策略应对,会为企业赢得更多的时间和市场策略调整空间。这类似于大江大河的洪峰预警,上游的洪峰出现什么状况,下游要做什么样的应对。数据用到这一层面上,才具有直接的业务价值,这不是那种销量同期比、环比、销售计划比数据能指导业务的价值能相比的。例如一家涉足线上业务的实体零售商,在一组货品的15分钟促销时间内,往往准备着3套应变策略,以确保货品能够按计划卖出。
在实体商业领域,有许多关于数据与营销的案例。一个较早的版本就是美国沃尔玛啤酒和尿布的数据关系。原来,美国的妇女在家照顾孩子,所以她们会嘱咐丈夫在下班回家的路上为孩子买尿布,而丈夫在买尿布的同时又会顺手购买自己爱喝的啤酒。
当分析师了解到啤酒和尿布销量存在正相关关系、并进一步分析的时候,发现了这样的购买情境,于是将这两种属于不同门类的商品摆在一起。这个发现为商家带来了新的销售组合。当然,即使再多的零售连锁企业知道这个故事,也极少从平时销售中能发现这样的组合,哪怕是牵强附会的。
所以,零售策略设计是零售业“大数据”价值最大的地方,也是“大数据”可以直接为其提供支持的业务。
2、零售企业对“大数据”应保持正确态度
企业的领导者首先要重视“大数据”的发展、重视企业的数据中心,把收集顾客数据作为企业营销运营的第一目标;第二,对企业内部人员进行培训及建立收集数据的软硬件机制;第三,以业务需求为准则,确定哪些数据是需要收集的;第四,确认在企业已有的数据基础上或者未来方向前提下,如何达成前三项目标的基础建设方案。
在这些IT基础工作需要企业有实实在在的投入和建设规范的信息化团队,作为中国商业最大的一分子——中小微型零售企业似乎是不可能也没有足够的能力来面对这样一场变化的。
大中型零售商因为本身业务及利润的积淀,已经能够承担这样一场需求趋势的需要成本。中小微型企业还处于快速发展过程中,如果也如同大中型企业进行全方面的投入,将很快会被新型的IT工具拖垮或者遭受重创。
但这并不意味着中小零售企业没有机会,实际上IT的发展为所有的企业都提供了平等的选择,云计算的广泛应用即是对这样一场变革带来的临时礼物。
作为中小微型零售企业,完全不必考虑自己建设一套“大数据”的IT系统,他们从精力、成本、能力上来说都不适合,因此此类企业可以将企业的IT建设外包给适合的服务商,企业本身的所有精力可以投入到对商圈的开发上。
目前,一些IT软件开发运营商也已经针对传统零售企业推出了云服务的基础平台,为中小微型商业企业提供了大型企业和超大型企业同样的基础环境及系统架构,小企业只需清晰地规划出自己的目标和适合的步骤,使用云平台按需付费即可,大可不必进行巨大的初始投入和不可预测的运行成本。
三、“大数据”在零售企业实战中的应用
1、Target
最早关于“大数据”的故事发生在美国第二大的超市塔吉特百货(Target)。孕妇对于零售商来说是个含金量很高的顾客群体。但是他们一般会去专门的孕妇商店而不是在Target购买孕期用品。人们一提起Target,往往想到的都是清洁用品、袜子和手纸之类的日常生活用品,却忽视了Target有孕妇需要的一切。为此,Target的市场营销人员求助于Target的顾客数据分析部要求建立一个模型,在孕妇第2个妊娠期就把她们给确认出来。在美国出生记录是公开的,等孩子出生了,新生儿母亲就会被铺天盖地的产品优惠广告包围,因此必须赶在孕妇第2个妊娠期行动起来。如果Target能够赶在所有零售商之前知道哪位顾客怀孕了,市场营销部门就可以早早的给他们发出量身定制的孕妇优惠广告,早早圈定宝贵的顾客资源。
如何能够准确地判断哪位顾客怀孕? Target想到公司有一个迎婴聚会(baby shower)的登记表,开始对这些登记表里的顾客的消费数据进行建模分析,不久就发现了许多非常有用的数据模式。比如模型发现,许多孕妇在第2个妊娠期的开始会买许多大包装的无香味护手霜;在怀孕的最初20周大量购买补充钙、镁、锌的善存片之类的保健品。最后Target选出了25种典型商品的消费数据构建了“怀孕预测指数”,通过这个指数,Target能够在很小的误差范围内预测到顾客的怀孕情况,因此Target就能早早地把孕妇优惠广告寄发给顾客。
为了不让顾客觉得商家侵犯了自己的隐私,Target把孕妇用品的优惠广告夹杂在其他一大堆与怀孕不相关的商品优惠广告当中。
根据这个“大数据”模型,Target制订了全新的广告营销方案,结果Target的孕期用品销售呈现了爆炸性的增长。Target的“大数据”分析技术从孕妇这个细分顾客群开始向其他各种细分客户群推广,从Target使用“大数据”的2002年到2010年间,Target的销售额从440亿美元增长到了670亿美元。
2、ZARA
ZARA平均每件服装价格只有LVHM四分之一,但是,回看两家公司的财务年报,ZARA税前毛利率比LVHM集团还高23、6%。
(1)分析顾客的需求
在ZARA的门店里,柜台和店内各角落都装有摄影机,店经理随身带着PDA。目的是记录其顾客的每个意见,如顾客对衣服图案的偏好,扣子的大小,拉链的款式之类的微小举动。店员会向分店经理汇报,经理上传到ZARA内部全球资讯网络中,每天至少两次传递资讯给总部设计人员,由总部作出决策后立即传送到生产线,改变产品样式。
关店后,销售人员结帐、盘点每天货品上下架情况,并对客人购买与退货率做出统计。再结合柜台现金资料,交易系统做出当日成交分析报告,分析当日产品热销排名,然后,数据直达ZARA仓储系统 。
收集海量的顾客意见,以此做出生产销售决策,这样的作法大大降低了存货率。同时,根据这些电话和电脑数据,ZARA分析出相似的“区域流行”,在颜色、版型的生产中,做出最靠近客户需求的市场区隔。
(2)结合线上店数据
2010年,ZARA同时在六个欧洲国家成立网络商店,增加了网络巨量资料的串连性。2011年,分别在美国、日本推出网络平台,除了增加营收,线上商店强化了双向搜寻引擎、资料分析的功能。不仅回收意见给生产端,让决策者精准找出目标市场;也对消费者提供更准确的时尚讯息,双方都能享受“大数据”带来的好处。分析师预估,网络商店为ZARA至少提升了10%营收。
此外,线上商店除了交易行为,也是活动产品上市前的营销试金石。ZARA通常先在网络上举办消费者意见调查,再从网络回馈中,撷取顾客意见,以此改善实际出货的产品。
ZARA将网络上的海量资料看作实体店面的前测指标。因为会在网络上搜寻时尚资讯的人,对服饰的喜好、资讯的掌握,催生潮流的能力,比一般大众更前卫。再者,会在网络上抢先得知ZARA资讯的消费者,进实体店面消费的比率也很高。
这些顾客资料,除了应用在生产端,同时被整个ZARA所属的英德斯(Inditex)集团各部门运用:包含客服中心、行销部、设计团队、生产线和通路等。根据这些巨量资料,形成各部门的KPI,完成ZARA内部的垂直整合主轴。
ZARA推行的海量资料整合,后来被ZARA所属英德斯集团底下八个品牌学习应用。可以预见未来的时尚圈,除了台面上的设计能力,台面下的资讯/数据大战,将是更重要的隐形战场。
(3)对数据快速处理、修正、执行
H&M一直想跟上ZARA的脚步,积极利用“大数据”改善产品流程,成效却不彰,两者差距愈拉愈大,这是为什么?
主要的原因是,“大数据”最重要功能是缩短生产时间,让生产端依照顾客意见,能于第一时间迅速修正。但是,H&M内部的管理流程,却无法支撑“大数据”供应的庞大资讯。H&M的供应链中,从打版到出货,需要三个月左右,完全不能与ZARA两周的时间相比。
因为H&M不像ZARA,后者设计生产近半维持在西班牙国内,而H&M产地分散到亚洲、中南美洲各地。跨国沟通的时间,拉长了生产的时间成本。如此一来,“大数据”即使当天反映了各区顾客意见,无法立即改善,资讯和生产分离的结果,让H&M内部的“大数据”系统功效受到限制。
“大数据”运营要成功的关键,是资讯系统要能与决策流程紧密结合,迅速对消费者的需求作出回应、修正,并且立刻执行决策。
3、亚马逊
此前亚马逊并未大张旗鼓推展广告业务,直至2012年年底,有报道指出,亚马逊即将推出实时广告交易平台,从而向Facebook和谷歌发起挑战。这个实时广告交易平台又称“需求方平台”(Demand Side Platform,DSP),可以让广告与目标消费者相遇。广告商可以在“需求方平台”上竞标网站的闲置广告空间,而竞标标的包括广告版位,以及符合特定条件的消费者。
亚马逊开发的“需求方平台”可以“协助广告商接触网路上的众多用户,同时也帮助客户迅速找到想购买产品的相关资讯”,“需求方平台”概念虽非亚马逊首创,但以丰富资料为后盾。
亚马逊与广告商分享的资讯有两类,一是依用户网路行为所做的通用分类,例如热衷时尚、喜爱电子产品、身份为母亲、爱喝咖啡等,二是用户的商品搜寻记录。至于消费者的实际购物资料,亚马逊似乎尚未列入分享。广告商即使无法得知实际消费记录,能了解潜在顾客的商品搜寻记录;亚马逊如果全力进军网路广告市场,仍可能大大改变产业生态。
亚马逊2012年的广告收入约为5亿美元, 2013年的广告收入将达10亿美元。这会成为亚马逊未来几年内营收增长的新动力,更重要的是,它可能是亚马逊各项业务中利润率最高的业务之一。
4、沃尔玛
2011年,沃尔玛电子商务的营收仅是亚马逊的五分之一,且差距年年扩大,让沃尔玛不得不设法奋起直追,找出各种提升数字营收的模式。最终,沃尔玛选择在社交网站的移动商务上放手一搏,让更大量、迅速的资讯,进入沃尔玛内部销售决策。沃尔玛的每张购买建议清单,都是大量资料运算而出的结果。
2011年4月,沃尔玛以3亿美元高价收购了一家专长分类社群网站Kosmix。Kosmix不仅能收集、分析网络上的海量资料(大数据)给企业,还能将这些资讯个人化,提供采购建议给终端消费者(若不是追踪结帐资料,这些细微的消费者习惯,很难从卖场巡逻中发现)。这意味着,沃尔玛使用的“大数据”模式,已经从“挖掘”顾客需求进展到要能够“创造”消费需求。
沃尔玛本身就是一个海量资料系统,适用各种商业上的分析行为,它的综合功能,作为世界最大的零售业(专题阅读)巨人,沃尔玛在全球超过200万名员工,总共有110个超大型配送中心,每天处理的资料量超过10亿笔。由于资料量过于庞大,沃尔玛的“大数据”系统最重要的任务,就是在做出每一笔决定前,将执行成本降到最低,并且创造新的消费机会。
Kosmix为沃尔玛打造的“大数据”系统称做“社交基因组(Social Genome)”,连结到Twitter、Facebook等社交媒体。工程师从每天热门消息中,推出与社会时事呼应的商品,创造消费需求。分类范围包含消费者、新闻事件、产品、地区、组织和新闻议题等。同时,针对社交网络快消息流的性质,沃尔玛内部的“大数据”实验室专门发展出一套追踪系统,结合手机上网,专门管理追踪庞大的社交动态,每天能处理的资讯量超过10亿笔。
“社交基因组”的应用方式五花八门。举例来说,沃尔玛实验室内部软件能从Foursquare平台上的打卡记录,分析出在黑色星期五,不同地区消费者最常购买的品项,然后,针对不同地区送出购买建议。
以上是小编为大家分享的关于大数据如何与零售业结合 在实战中应用的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅶ 零售行业大数据技术如何应用
1、实时进行管理交付
作为零售商,开展业务和获利的关键要素是尽快收到货物,并确保货物也能迅速交付给商店或客户。大数据通过使零售商能够实时管理交付而提供帮助,这是零售供应链管理的关键。零售商可了解交通和天气状况最新信息,以及正在运输的货物所在的位置。
2、拣选更好的时间
许多零售商的另一个重要组成部分是拣选和包装订单。这是一个传统的劳动密集型流程,在以往,只有大型零售商才能通过自动化拣选机器人或组织大量员工来加快拣选速度。如今采用大数据,即使是小型零售商也可以改进其流程,并在更好的拣选时间进行拣选。
3、将供应链细分
消费者比以往任何时候都期待获得更加个性化的购物体验和客户服务。零售商可以通过数据对供应链进行细分,更好地迎合不同的目标市场,提高转化率。通过记录数据分析告诉零售商在不同渠道(例如,网络、移动和社交)与购物者的互动,从而使其向购物者提供个性化服务。
4、供应商管理常改善
零售商可能与供应链中的多家公司合作。可能会有直运供应商、物流供应商、包装供应商和其他供应商,他们需要组织、管理和审查。反过来,试图提高盈利能力和可靠性也可能是一项挑战。大数据技术可以提供帮助。