Ⅰ 大数据时代对传统销售行业有什么影响
我觉得大数据时代对传统销售行业有非常大的影响,因为传统销售过多过少的都没有什么网络的联系,所以对自己的发展是非常不利的
Ⅱ 大数据传统的企业管理存在着哪些问题
大数据时代传统企业管理遇到的问题:
随着信息化程度不断提高,互联网、物联网、云计算和智能手机终端等技术的不断发展,数据的产生、存储、传播和分析等,不论从数量、方式方法上都较以往有了天壤之别,大数据时代给各行各业带来了巨大的冲击,给传统的企业管理带来一系列挑战。
1、企业决策过程
传统企业的经营决策往往更多地依靠企业的管理者,依靠管理者的经验、直觉和魄力,这样的企业在以前可能会发展壮大,但是缺乏对决策管理过程的监控,缺乏对数据的搜集、提取和分析,没有明确数据与决策结果的关联关系。另外,传统企业的数据分散在各个部门,数据的集中度不高,人们对其关注程度也不高。随着大数据时代的到来,传统企业的组织结构和决策过程必将面临前所未有的考验。
2、智能化、信息化程度不够
大数据的“4V”特征在数据存储、传输、分析、处理等方面较以往均有本质变化。数据量几何倍数的增长,对存储技术提出了挑战,需要高速信息传输能力支持,对非结构化的数据、低密度有价值数据的快速分析和处理能力提出更高要求。据统计,企业中85%的数据都属于非结构化、低密度的数据,大多数企业现有的数据处理方法和系统无法将大量的非结构化数据进行处理。另外,随着数据量的快速增长,对数据的存储、传输能力也提出更高的要求,这都将成为企业在大数据时代遇到的难题。
3、信息安全问题
随着大数据的发展,企业的海量数据中不仅包括业务数据、客户数据、公司内部数据,也不乏大量个人信息,数据本身的安全及个人隐私面临着泄露的挑战。大数据环境下通过对用户数据的深度分析,很容易了解用户行为和喜好,严重的将导致企业的商业机密及个人隐私泄露。如何保证商业秘密、个人隐私秘密等安全问题,对企业是一道难题。
4、人力资源匮乏
大数据改变了企业的传统管理思维,大数据时代的到来企业的管理者和员工都需要重新认识数据的重要性,提高相应的素质才能胜任原有的职位。在大数据时代,对数据的处理和分析已经超出了信息化的范畴,超出了市场营销的范畴,超出了运营管理的范畴,需要具有综合能力的人才,需要有相应新的部门来整合数据资源。对大数据的处理需求,必须有专业的数据分析人才运用这些大数据,才能将其转化为经济价值,数据人才必须能够深入了解企业业务与组织,具有统计应用知识、熟悉大数据数据分析工具的运用等,这就要求数据分析人员必须有整合运用3项基本技能的要求,而传统企业这方面人才非常稀少。
Ⅲ 大数据时代下,传统商业模式该如何变革
大数据时代下,传统商业模式该如何变革
最近一段时期,大数据这个词风靡全球,作为云计算、物联网之后信息社会又一次革命性技术的突破,正在将信息社会发展引入一个新的阶段,以大数据为代表的IT技术将催生生命科学、新材料、新能源等技术的融合,从而促发人类巨大的革命。
大数据可以使这些技术融合在一起,更快地发展吗?是的,因为我们的生物技术已经能够破解我们的RND,我们能对里面每一个基因,包括里面分子构成核苷酸进行分析,但这需要超大量的数据计算,如果我们有超大量的计算,能把这些遗传基因逐步排列,并且用最新的方法来改造他们,那么人类很多的疑难杂症就可以解决。
总裁培训大数据兴盛以来,给我们带来了巨大的价值,大数据将来像资源,像人力资源、自然资源一样,会成为一个国家十分重要的禀赋,并且对我们的生产生活、行政管理产生非常深远的价值。
第一个是商业价值,可以实施精准的营销,不断发现商机,根据典型的案例分析,在充分利用大数据的条件下,零售商可以实现利润将近60%的增长,制造商可以降低50%的成本。比如说亚马逊的推荐法非常有名,他们能够根据消费记录,推测每个记录的消费偏好和潜在的需求。
世界第二大零售商乐购从用户的购买记录中解析了每一个用户的类别,进行品种的推送和精准营销。还有专家根据大数据的网友情绪变化来做股市预测,预测的成功率很高,我看报告,预测率高于87%,但是我想我们没做这件事,因为我们的股市从6000点到2000点,很难预测精准的投向。
第二是经济价值,会催生新产业和促进产业的升级。现在从事数据掌控、数据分析、数据交换的企业正在雨后春笋一般生长,已经衍生出很多的数据设计、数据制造、数据营销的新产品。
几年来,全国大数据技术与服务业的市场增速远远高于IT产业增速,规模从2010年的32亿,估计到2016年238亿美元,中国大数据产业的发展更是令人期待。2012年中国技术与服务市场只有4.5亿,而到2015年达到46亿,2016年可以突破百亿。
第三,大数据还有社会价值,广泛应用和提高管理效能,大家知道越来越多的政府利用大数据进行医疗健康、食品卫生、道路交通、地质灾害、社会舆情、国防安全等服务,大数据也对行政效能的提高大有裨益。
麦肯锡证明欧洲部门应用大数据以后,行政管理费用降低2,500亿美元。当然现在食品行业的问题,医患矛盾的问题还是很突出,我相信解决这些问题不仅要加强管理,还要充分运用我们的大数据。
第四,在思维价值方面,大数据可以拓展思维形式,可以让科研人员直接从数据中挖掘智慧。我们过去搞数量经济的同志们都知道,我们做每一个科研数据的分析都要建立在概率学的基础上,这个可能性是大概率还是小概率,当概率在50%左右的时候我们是非常难下决心的,而大概率要大量的样本数,需要非常高的成本。
现在大数据几乎含着信息数据的全部,所以在这种时候,概率的分析往往就会相形见绌,我们可以直接从大数据中得到最精准的分析,所以图灵奖得主大数据的科学可能是科学继试验科学、理论科学、计算科学之后的第四种科学。
第五,大数据还有一个被认为是未来新能源一样的战略,就是战略价值,而且要列入国家战略。美欧日都在加快实施大数据战略,特别是美国2012年启动大数据研发计划,是美国又一次重大的科研战略部署。欧盟地平线2020计划,日本新ICT战略研究计划都将大数据作为研究重点。
凡事皆有利弊,人类因为数据泛滥的难题面临着新的困惑,面临着大数据下全球治理的缺失和标准规则的如何融合统一问题。
相关课程推荐:企业管理培训
我想面对数据的真伪,关键人类自身要有法可依,要有鉴别、加工、集成和运用数据的能力,信息技术泛滥,我们如何来管理,如何去伪存真?
博商观点:在大数据时代,个性化将颠覆一切传统商业模式,成为未来商业发展的终极方向和新驱动力。大数据为个性化商业应用提供了充足的养分和可持续发展的沃土。电子商务是崭新的模式,也是现代服务业的重要组成部分,由于大数据的支撑,电商正在成为世界经济中一个崭新的亮点,并将深刻改变人们的消费、流通和生产。现在种种势头表明,电子商务有利推动了全球化。
以上是小编为大家分享的关于大数据时代下,传统商业模式该如何变革的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅳ 大数据技术的出现对传统决策逻辑与决策文化带来了哪些挑战
第一,进入大数据时代以来,企业决策不再一味依赖企业中的少数人,要求企业全体人员都需参与企业决策。所以企业必须及时更新决策组织与企业决策文化,一般情况下,企业内部决策组织包括集中与分散二种。集中则强调拥有稳定的环境,分散则可以应用于不稳定的环境中,其本身可以适应各种环境,在引入大数据技术以后,分散式决策组织有着更强的信息处理与加工能力,其有效影响着正确决策的制订。再有,基于大数据技术的决策环境也处于不断发展变化当中,表现为明显的分散性,所以高层领导与此相对应也不会集中,由此分散式决策结构得以普遍应用。第二,企业决策权受企业决策文化的影响。进入大数据时代以来,企业当中已经逐步形成了新型文化观点,企业决策文化得以不断丰富与发展。(1)企业决策逻辑发生了改变,收集信息与应用信息在决策中的作用日益重要,企业逐步认识到全体员工决策的重要性,高度重视广大员工提出的意见;(2)企业将培养数据分析专业人才放在重要地位,利用各种优惠措施支持企业内部员工提高自己的数据应用能力,由此推动了企业决策文化的顺利发展。
Ⅳ 大数据互联网时代下传统行业如何生存与转型
针对互联网大趋势下的需求,传统企业的转型之路可以从以下几个方向着手:
1、转思维:传统企业互联网转型,首先是理念思维的转型。实际上互联网思维其实就是陪码改用互联网的运营方式去解决产芦判品的销售、推广、运营的思路。移动互联网思维带来的是一场变革,一种颠覆市场的思考,传统行业应该做好拥抱这场新的变革,一起颠覆,一起成长的准备,树立转型变革紧迫感模脊,为转型推动进行铺垫。
2、创模式:通过对企业现状能力或资源调研分析,行业趋势及产业链利益相关方价值发现,互联网转型案例商业模式剖析,互联网技术驱动商业模式创新等领域的深入探讨,帮助企业明晰互联网转型定位与方向,对企业进行商业模式创新设计,为企业设计独特、高价值的发展之路。
3、改机制:互联网下新型商业模式的实现必须和组织管理机制相适应。帮助企业建立和商业模式相匹配的组织管理机制,从而最大化的激发组织创新活力。
4、建平台:互联网下新型运作模式的实现必须有相应的互联网平台作为支撑才能得以落地实现。帮助企业进行快速的规划设计,开发并不断的迭代优化,实现和业务运作的无缝对接。
Ⅵ 大数据如何据颠覆传统电视行业
大数据如何据颠覆传统电视行业
在媒体业界,大数据主要在以社交媒体为代表的新媒体领域的蓬勃发展当中大行其道。传统媒体也不甘落后。2013年出现的许多成功案例表明,大数据已经成为传统媒体实现业态升级的重要驱动力。
《纽约时报》、《卫报》等老牌报纸利用大数据挖掘技术,推动新闻向“利基化”、“纵深化”发展。在社交媒体当道的今天,面对新闻日趋“碎片化”、“扁平化”的严峻态势,传统媒体可以借助于大数据技术继续保持其在新闻品质和专业水准上的领先地位。
与报业相比,电视业对大数据的运用相对迟缓和谨慎。
然而,星星之火亦能看出燎原之势,随着电视从传统的“一对多”式的“广播”型媒介升级为“多对多”式的、以移动化、互联化、多屏化为其核心竞争力的“窄播”、“互播”型全媒体平台,网络运营商、广电运营商、服务提供商等产业链主体能够以各类数据为“杠杆”,挖掘和撬动各类不同层次受众的需求,提供更加个性化、更具互动性、更有深度的媒介体验。
具体来说,大数据技术的广泛运用在收视测量、节目策划与改进、观众互动参与、广告精准投放等各个环节上产生了颠覆性的影响,推动了电视业的全方位变革与重构。本文拟从电视业运营的几个关键环节入手探讨大数据技术所产生的颠覆与变革,供我国从业者借鉴和参考。
收视测量变革:从“抽样”到“全采样”
大数据技术对电视业最为直接也是最见成效的影响体现在收视测量的变革上。大数据的核心思想是用规模剧增来改变现状。
正如维克托?迈尔-舍恩伯格、肯尼思?库克耶所指出的,大数据时代最为显著的特征就是“全数据”或“全样本”成为统计的依据,而不再依赖于传统的随机抽样。
抽样分析是信息相对匮乏、流通受到限制的模拟数据时代的产物。它的信度和效度依赖于抽样的绝对随机性,但是在实际操作中几乎无法实现。此外,随机抽样也不适合考察子类别的情况,当人们想了解更深层次的细分领域的情况时就无法采用这种方法。
换言之,随机抽样模式所依据的是“扁平化”的数据模式。
在全样本模式下,数据处理技术发生了颠覆性的变革。专业机构可以收集到与某个特定变量相关的所有数据并进行处理,样本可以等于总体。
对于电视业而言,这一变化直接体现在收视率调查上。对于电视媒体而言,基于随机抽样的收视率调查有望被基于海量样本——甚至全样本——的收视测量所取代,从而为电视业界的内容生产提供更为精准的数据支撑。
纵观收视测量发展的历史,经历了由第一代电话调查、第二代日记卡固定样组测量、第三代测量仪器记录到目前第四代数字电视测量技术的发展。
前三代的测量方法均建立在抽样调查的基础上,样本量有限,且有测量误差较大、需要样本户配合的程度较高等缺点。伴随数字电视的发展,频道数量激增,业界对目标市场进行精准收视调查的需求愈来愈迫切。增加第三代收视测量仪的样本数量可以在一定程度上满足这一需求,但是样本量的增加必然会受到成本控制的限制。
建立在大数据基础上的第四代收视测量颠覆了以往的抽样调查方法,通过对机顶盒的升级,能够对观众开关机顶盒、转换频道、使用增值业务等操作行为进行精确到秒的准确记录,不但最大限度保证了数据采集和传输的安全性,而且可以实现“全样本”测量。
目前,世界上影响最大的收视率调查公司——尼尔森公司采用大数据挖掘技术,可以将收视率测量的样本数量提升为过去的十倍或更高,甚至可以提供前一天的全样本观众收视率数据。
社交网络对电视观众的影响受到业界重视。近期发布的相关研究结果表明,电视节目在社交网络上的关注度与传统的收视率同等重要,即“我推故我看”。
因此,社交网络的关注度成为衡量电视节目影响力的新的有效标准。更加重要的是,大数据能为我们提供实时、动态、高效的数据分析,与以往的静态收视率分析相比,是一次质的飞跃。2012年末,尼尔森公司收购了以分析电视内容中的社交数据为核心业务的新兴调查机构“社会指南”(Social Guide)公司,后来又与社交媒体巨头“推特”(Twitter)公司合作,推出基于微博内容的电视收视率报告。
统计显示,在晚间黄金时段,在微博上传播40%的帖子均与电视节目相关。尼尔森公司通过对140家无线和有线电视公司的调查,证实了基于微博内容的电视收视率报告对于传统的收视率测量是一个很好的补充。
内容生产变革:从“制播分离”到“制播同步”
如果说大数据在电视业的直接运用体现在收视率测量上,那么它所产生的更有意义的变革则体现在对节目生产模式和流程的重构上。
过去,电视节目的内容框架一般在播出前就确定了,在播出过程中进行调整和改变并不常见。在大数据时代,由于实时收视数据——特别是对节目内容的实时反馈的获取和分析——越来越容易实现,节目的制作流程发生了新的变化。
“制播分离”的传统模式被彻底颠覆,内容生产由“静态”变成了“动态”,在播出过程中编导随时根据数据分析报告对节目内容作出“微调”甚至“转向”的决定。以内容生产、调整与播出、反馈融为一体的“制播同步”模式将成为大数据时代电视内容生产的常态。
在这方面,一些国外媒体已经做了一些积极的探索。
英国广播公司(BBC)长期追踪大数据技术的发展动向,把实时的、以观众为基础的数据分析应用到电视运营的各个环节——包括内容生产、财务管理、市场推广等。
在一些“真人秀”、访谈类的直播节目中,大数据技术已经得到了广泛应用。BBC对从社交媒体得到的数据进行实时分析,在节目现场直播中根据观众在社交媒体上的评论决定接下来的推进方向。如果观众喜欢看节目的某一部分,比如某一特定主题的访谈或讨论,就延长这部分的播出时间;反之,如果观众不喜欢,就进行相应的调整。
除了娱乐节目等市场化程度较高的品类,大数据技术也进入了新闻节目的生产流程当中。
在印度,一档旨在揭露社会问题真相的新闻访谈节目《真相战胜一切》(Satyamev Jayate)播出第一季就吸引了4亿本土观众,通过视频网站、Facebook、Twitter、YouTube和移动终端收看该节目的全球受众超过了12亿,成为2013年全球最引人注目的电视节目之一。
分析这档节目成功背后的原因,除了讨论的议题本身关注度较高以及主持人的明星效应外,大数据技术发挥的作用功不可没。
“真相战胜一切”是镌刻在印度国徽上的格言。与人们最为熟悉的印度宝莱坞式轻歌曼舞的风格迥然不同,这档新闻访谈节目的宗旨是“关注社会、贴近民众、深层次揭露社会问题”。
2013年播出的第一季共十三集,主题分别为:被迫堕胎与残害女婴、儿童性骚扰、巨额嫁妆、医患关系、残障人士、家庭暴力、滥用农药、酗酒、种姓制度、老年人权益、水资源保护、印度梦,等等。
节目主持人是宝莱坞电影巨星阿米尔?汗(Aamir Khan),他通过大量实地采访,讲述了不同阶层印度人的真实故事,大胆曝光印度社会的种种弊病,力图以“残酷的真相”唤醒大众,引发公共讨论,进而推动社会变革。
值得一提的是,这档节目运用了大数据手段来策划选题、推动节目进程,甚至影响到国家政策、法律的制定或修改。
编导通过社交网站收集、分析了数以百万计的热点议题及其讨论帖子,进行了大数据挖掘。他们不仅以这些数据为基础进行节目策划,还积极使用这些数据推动政治变革。
观众积极参与节目互动,表达对重要议题的观点。在节目播出的进程中,制作方及时向观众提供来自各级政府官员、议员和意见领袖的思想和行动的数据反馈,从而形成政府、媒体和公众三方议程的有效互动,促成公共政策的调整和完善。
比较典型的例子是,印度国会曾经在其中探讨儿童性骚扰的一期节目播出后,迅速通过了一项儿童保护法案,主持人阿米尔也获邀到国会听证。
媒介功能重构:从“看电视”到“用电视”
随着电视互动性的增强,观众的参与度大幅提升,原本被动收视的“沙发土豆”们开始更多地动脑、动嘴、动手,有目的地“使用”电视或网络视频、可视化信息图表等,“看电视”逐渐过渡到“用电视”阶段,电视的功能及其“工具理性”得以进一步发掘和拓展。
在实现“看电视”到“用电视”的转变当中,新兴的“数据新闻”(datajournalism)发挥了至关重要的作用。
简言之,数据新闻就是通过反复抓取、筛选和重组等手段来深度挖掘数据,聚焦专门信息以过滤数据,运用可视化的手段来呈现数据并合成新闻故事和具有较强工具性的应用软件(如APP)。
在电视机构中,英国广播公司(BBC)在数据新闻的开发上独领风骚。BBC新闻网数据团队由20余位记者、设计师和研发人员组成。除了数据项目和视觉效果的制作外,团队还负责设计新闻网站上的所有信息图表,研发互动多媒体功能和移动应用软件(APP),为电视业在数据新闻领域的拓展率先垂范。
BBC新闻网推出的“死亡之路:1999-2013年英国每条道路上每例死亡”即为一个成功的案例。
在信息个性化方面,用户可以输入邮政编码查询自己居住地区过去十年里每条道路上发生的车祸致死的数字和个案。
在多媒体形态方面,编辑将警方提供的相关事实和数据视觉化、动态化、人性化,同时与“伦敦急救协会”、BBC驻英国各地的分支机构进行合作,即时追踪主要城镇及其周边地区发生的每场车祸并进行在线直播,还通过Twitter推送相关报道,冠以“#cash24”的标签,同时会在地图上标出车祸发生的具体地点。
数据新闻的广泛使用把“看电视”变成了“用电视”。这方面工具性更强的是BBC网站上推出的“财政预算计算器”网页及其APP。
用户借助于这一工具可以预见国家财政预算一旦生效后,对个人生活可能产生的正面或负面的影响,并且可以在社交媒体平台上分享计算结果。
BBC与全球四大会计师事务所之一的毕马威建立了合作关系,后者根据英国政府公布的年度财政预算进行大数据挖掘,BBC负责编创吸引受众的界面,便于他们的使用参与。
另一个有趣的“数据新闻工具”是专题《70亿人口的世界:你是第几个出生的人?》,它的发布日期与世界人口达70亿的官方日期一致,用户只要输入自己的出生年月日,就可以立即计算出自己是全球第几个出生的人,并通过Twitter和Facebook分享自己在全球的出生排名。
这一专题使用了联合国人口发展基金提供的数据,非常受欢迎,成为英国2011年Facebook上人气最旺的分享链接。
传播模式重构:由“机械化”到“智能化”
大数据时代,内容生产和受众信息发掘技术的进步使媒介的传播模式由“机械化”转向“智能化”,电视业也不例外。
“机械化”的传播方式意味着电视台充当了节目与内容的“传送带”和受众的“供应商”,而“智能化”的传播方式则把电视台转变成为受众的“服务商”。
随着电视节目的传播走向“多屏幕化”和“多平台化”,智能电视机、平板电脑和手机等会更为精准化地记录观众的收视行为和偏好,借助于大数据技术进行挖掘与分析,从而使电视台在最合适的时间、最合适的屏幕或平台上传播最合适的媒体内容,为用户提供更高质量的服务。
美国一些付费电视运营商已经开始利用与客户和服务相关的数据迅速作出决策,以全方位提升用户的收视体验,包括画面、声音、内容的质量等。
IBM、惠普等大型IT企业拥有大数据中心和长期积累的数据分析产品系列,他们与Mariner公司、IneoQuest公司、Agama Technologies公司等传统的付费电视运营商已经在频繁接触,为合作做准备。
值得关注的是,大数据技术的应用已经由“小众化”的付费电视转向了更为广泛的业界领域。
2013年媒体业界的一个标志性事件是世界最大的社交媒体“推特”(Twitter)在纽交所上市后即选择与美国最大的有线电视运营商“康姆卡斯特”(Comcast)公司建立合作伙伴关系。
这预示着大数据技术也会成为传统媒体与新媒体实现深层次“竞合”的结合点。就目前而言,两者最直接的合作体现在收视测量上,可以预见,在此基础上我们还会看到电视业与社交媒体在内容生产、用户参与等层面上更为广泛而深入的合作。
在传播目标市场的战略选择与具体部署上,数据也能起到关键性的作用。
2013年,美联社发布了两份在线视频新闻消费报告,一份是针对欧洲市场的,一份是针对亚洲市场的。美联社通过在线和实地调查两种方式了解受众对视频新闻内容的需求,并确定视频资源集中的关键区域,以保证这些地区视频业务的增长。
例如,美联社对亚洲市场的调查显示,在线访问新闻的中国消费者中,有10%每天访问新闻视频剪辑,70%至少每周一次观看在线新闻视频;年龄在25至44岁的消费者最倾向于经常观看视频,其中超过60%的人至少每周观看2-3次;平板电脑用户更倾向于访问在线新闻视频,使用平板电脑访问在线新闻的观众中有75%会每周观看至少2-3次视频新闻,而智能手机用户和台式电脑用户的这一比例分别为60%和57%。
这些数据有助于美联社制定目标视频市场的营销推广策略,从而实现更为精准的传播。
大数据技术在电视业的运用才刚刚起步,除了前文中提到一些数据新闻的成功案例和在国内已经获得广泛关注的网络定制剧《纸牌屋》(House of Cards)之外,相关的实践和探索还有待进一步深化。
但越来越多的成功案例已经并将继续证明,在传统电视机构积极探索产业升级和业态转型的大背景下,大数据技术的广泛运用无疑是一把开启电视业未来的“金钥匙”。
以上是小编为大家分享的关于大数据如何据颠覆传统电视行业的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅶ 大数据颠覆传统 变革商业模式
大数据颠覆传统 变革商业模式_数据分析师考试
“大数据”是继云计算、物联网之后IT产业又一次颠覆性的技术变革。对国家治理模式、企业决策和业务流程、个人生活方式都将产生巨大的影响。
大数据时代网民和消费者的界限正在消弭,企业的疆界变得模糊,数据成为核心的资产,并将深刻影响企业的业务模式,甚至重构其文化和组织。
在大数据时代,企业面临文化、战略、组织、流程、信息化、公共关系、人才培养方方面面的挑战,同时也迎来重大的转型机遇和飞跃契机。如果不能利用大数据更加贴近消费者、深刻理解需求、高效分析信息并作出预判,所有传统的产品公司都只能沦为新型用户平台级公司的附庸,其衰落不是管理能扭转的。
云计算的核心是业务模式,本质是数据处理技术。数据是资产,云为数据资产提供了保管、访问的场所和渠道。如何盘活数据资产,使其为国家治理、企业决策乃至个人生活服务,是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。
企业内部的经营交易信息,物联网世界中商品、物流信息,互联网世界中人与人交互信息、位置信息等等是大数据的三个主要来源。其信息量远远超越了现有企业IT架构和基础设施的承载能力,其实时性要求则大大超越现有的计算能力。如果计划在大数据时代获益,必将引发新一轮的信息化投资和建设热潮。
目前,云计算在国内方兴未艾。在云计算的三层架构(SaaS,PaaS,laaS)当中,PaaS是技术最复杂、最难实现的一层。企业自己搭建PaaS平台几乎是不可能完成的任务。
采用PaaS的好处就是,用户只需要关心应用和数据,其他的事情、组件全部由PaaS和IaaS进行自动化运维管理
全球有超过十亿的智能手机用户,90%用户全天机不离身,各大企业都竞相推出有吸引力的移动应用体验,挖掘移动设备上的海量数据带来的商机。
大数据和云计算的技术几乎密不可分,无论是云计算、大数据都是构建在这些基础平台之上的。对于传统行业/企业而言,云计算、大数据的应用刚刚开始,但对互联网企业而言,云计算、大数据已经是商业服务有机组成部分,因此,互联网在云计算、大数据方面保持领先。
传统行业/企业缺乏互联网企业的基因,其很多业务多采用外包方式,软件开发人员规模有限,更难得心应手地驾驭各种开源技术。此外,传统行业/企业有很多历史的包袱,烟筒式的应用系统林立,数据之间缺乏共享,信息应用水平受到很多限制。如何才能够让传统行业/企业像互联网企业一样轻松驾驭信息化系统,显然传统行业/企业需要一个高度自动化的基础平台。
目前,中国不仅是一个真正意义上的大数据国家,而且在大数据实践这个新的历史关头,并没有落后于美国。除了庞大的人口总数之外,中国还拥有很多与众不同的消费模式,除去传统的电信金融互联网之外,没有哪个国家拥有中国这样火爆的电商、发达的物流,还有向互联网时代转型的制造业、教育、医疗,科研,零售,交通,这些行业中孕育着大数据基础和今天我们还无法完整预测的发展前景。
在美国,无论企业还是其他机构,对于大数据的认识和应用都比较成熟,也愿意尝试不同的新产品。而在中国内地、中国香港、中国台湾、日本和韩国,李凯翔说,我看到的现象是,要么(企业)非常保守,只要有数据库就可以了;要么就是非常领先,已经在尝试开始下载诸如开源这样的软件尝试了。
随着大数据时代的深入发展,大数据带来的改变是全方面的,尤其是在商业领域,大数据蕴含巨大商业截止,从目前来看,大数据正改变传统商业模式,在这个过程中,中国的市场潜力是巨大的。
以上是小编为大家分享的关于大数据颠覆传统 变革商业模式的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅷ 大数据是如何颠覆传统行业的
因为现在线上模式很火