1. 实验二十一 遥感图像立体像对DEM提取
一、实验目的
通过利用ASTER影像立体像对进行高程信息(DEM)提取实验,掌握运用ENVI Topographic功能从ASTER影像数据中提取DEM 的操作,加深对遥感影像信息与DEM 关系的理解。
二、实验内容
①运用ASTER 可见光近红外波段(VNIR)的Band3N和Band3B立体像对数据提取高程信息(DEM)的原理分析;②运用ENVI Topographic功能从广西姑婆山地区ASTER数据提取DEM的操作。
三、实验要求
①掌握利用立体像对提取DEM 的基本操作方法;②掌握DEM 编辑方法。编写实验报告。
四、技术条件
①微型计算机;②广西姑婆山地区ASTER 数据;③ENVI软件;④Photoshop软件(ver.6.0以上)和ACDSee软件(ver.4.0以上)。
五、实验步骤
(1)打开广西姑婆山地区ASTER数据:打开“File>Open Image Files”,将ASTER数据放入“Available Bands List”中,可以看到,ASTER数据包含从可见光到热红外共14个光谱通道,分为可见光近红外(VNIR)、短波红外(SWIR)、热红外(TIR)。其中可见光近红外(VNIR)中的Band3 分为Band3N 和Band3B, Band3N 为星下点数据, Band3B为后视波段,在本次实验中将利用这两个波段进行立体像对观测及DEM 提取。
(2)输入立体像对:打开“Topographic>DEM Extraction>DEM Extraction Wizard>New”,将出现“DEM Extarction Wizard Step 1 of 9”输入立体像对对话框,如图21-1所示,选择“Select StereoImage …”,在“LeftImage”输入星下点数据Band3N;在“Right Image”输入后视数据Band3B,输入完毕后将会自动算出该地区最高点和最低点高程。
(3)选择地面控制点:输入立体像对影像后,选择【Next】按钮进行下一步操作,出现“DEM Extraction Wizard Step 2 of 9”选择地面控制点对话框,如图21-2所示,本次实验选择“No GCPs(relative DEM values only)”选项,即不选择地面控制点,这种方法提取的高程信息为相对高程。
图21-1 选择立体像对影像对话框
图21-2 选择地面控制点对话框
(4)定义连接点:选择地面控制点后,选择【Next】按钮进行下一步操作,出现“DEM Extraction Wizard Step 4 of 9”定义连接点对话框,在连接点来源选项中,选择“Generate Tie Points Automaticalyl”选项,即自动生成连接点,自定义生成连接点参数,包括连接点数量(Number of Tie Points)、选择窗口大小(Search Window Size)、移动窗口大小(Moving Window Size)、区域海拔(Region Elevation)四项,如图21- 3所示,设定适当的参数后选择【Next】按钮进行下一步操作。
等待连接点自动产生后,将会出现左右两幅影像及“DEM Extraction Wizard Step 5 of 9”编辑连接点对话框,如图21-4所示,按动“Current Tie Point”左右箭头,选择目前连接点,将误差较大的连接点进行手动调节,或者直接按【Delete】按钮删除;或者选择【Add】按钮在左右两幅影像上添加新的连接点,确保“Maximum Y Parallax”最大视角误差小于10。
编辑连接点完成后,选择【Next 按钮进行下一步操作,出现“DEM Extraction Wizard Step 6 of 9”对话框,生成左右两幅核线影像,选择保存路径,并可以选择下方“Examine Epipolar Results”检查核线结果,如图21-5所示。
(5)设置DEM 提取参数:保存和检查核线结果后,选择【Next】按钮进行下一步操作,出现“DEM Extraction Wizard Step 7 of 9”对话框,选择输出DEM 的投影坐标以及像元大小,选择好后点击【Next】按钮进行下一步操作,将出现“DEM Extraction Wizard Step 8 of 9”设置DEM 参数对话框,如图21-6所示。
图21-3 定义连接点对话框
图21-4 编辑连接点对话框
图21-5 保存核线影像文件对话框
图21-6 DEM 提取参数设置对话框
在DEM 提取参数(DEM Extraction Parameters)列表中可以设置最小相关系数(Minmum Correlation)、背景值(Background Value)、边缘圆滑(Edge Trimming)、移动窗口大小(Moving Window Size)、地形精度(Terrain Relief)、地形级别(Terrain Detail)。
在DEM结果输出列表中,可以选择输出数据类型(分整型和浮点型两种)、选择输出文件存储路径,如图21-6所示。
(6)编辑DEM:输出DEM 数据后,出现“DEM Extraction Wizard Step 9 of 9”对话框,点击【Load DEM Result to Display with Editing Tool】按钮,可以显示提取出的DEM数据和“DEM Editing Tool”对话框,可以用DEM 编辑工具对生成的DEM 数据进行编辑,如图21-7所示。
图21-7 DEM 编辑工具对话框
六、实验报告
(1)简述实验过程。
(2)回答问题:①ASTER有15个波段,提取DEM 数据依靠哪些波段数据?为什么?②本次实验提取了相对DEM 数据,如果要提取绝对DEM数据,需要如何操作?
实验报告格式见附录一。
2. 空间数据
所有与地理位置有关的图形数据都称为空间数据。按照数据的种类,将塔里木河流域的空间数据分成遥感影像、空间基础地理图形、生态环境专题图形三大类。
(一)遥感影像数据
塔里木河生态环境遥感影像数据是整个监测系统可持续运行的基础,为形成多层次、运行化的动态监测体系,需采用多种卫星图像数据,数据类型包括MODIS、LANDSATTM/ETM+、ASTER、CBERS、SPOT和QUICKBIRD等卫星图像。
1.MODIS数据
MODIS卫星图像数据,覆盖范围大,更新周期短,是宏观动态监测的主要信息源。扫描宽度2330km,单景即可覆盖塔里木河整个流域,时相为自2003年6月开始,数据更新周期为15d。MODIS数据共有36个波段,CH1、CH2空间分辨率为250m,CH3至CH7为500m,CH8至CH36为1000m。
2.LANDSATTM/ETM+数据
TM图像数据在可见光-热红外(0.45~12.5μm)共有7个波段,TM1~TM5、TM7地面分辨率为30m,TM6为120m。ETM+1~ETM+5、ETM+7地面分辨率为30m,ETM+6为60m,ETM+Pan(0.52~0.90μm)为15m。TM/ETM+数据单景幅宽185km×185km。覆盖塔里木河全流域需要TM/ETM+50景,其中“四源一干”范围29景。生态环境本底调查以2002年为准,动态监测每两年一次。另外,为开展塔里木河干流上游土壤盐渍化监测,每监测周期采集2月下旬至3月初的TM/ETM+图像5景(ASTER数据45景)。
3.ASTER数据
LANDSAT-7失效后选用ASTER图像替代ETM+数据。其Band1~Band3相当于TM/ETM+2~TM/ETM+4,但地面分辨率达15m;Band4~Band9对应TM/ETM+5、TM/ETM+7,地面分辨率也是30m;Band10~Band14对应TM/ETM+6,但其地面分辨率为90m。ASTER数据单景幅宽60km×60km。共收集2004年7~9月覆盖塔里木河流域“四源一干”范围ASTER数据120景。
4.CBERS数据
中巴地球资源卫星(CBERS)是我国和巴西共同发射的国土资源勘查卫星,其图像数据可作为美国LANDSATTM/ETM+、ASTER图像数据的补充。使用CBERSB1~B5数据,地面分辨率19.5m,B1~B4对应于TM/ETM+1~TM/ETM+4,B5波段相当于ETM+Pan数据。单景幅宽113km×113km,共收集塔里木河全流域所需数据119景,时相为2002年7~9月。
5.SPOT-5数据
SPOT-5有5个较窄的、更适宜的光谱段。全色波段影像空间分辨率达2.5m,多光谱波段为10m,数据单景幅宽60km×60km。覆盖乌斯曼(中游)和喀尔达依(下游)两个重点区PA+多光谱各一景,从2003年7~9月开始以1年为一个周期进行生态监测。
6.QUICKBIRD数据
QUICKBIRD卫星扫描宽度16.5km,星下点全色波段空间分辨率0.61m,4个多光谱波段2.44m。系统在塔里木河下游末端台特玛湖230km2范围利用QUICKBIRD图像监测调水方案实施后水面及植被恢复状况,自2003年9月起,以两年为一个周期进行监测。
(二)空间基础地理图形数据
本系统按照不同的管理范围采集了不同尺度的基础地理图形数据,这些基础图形数据为分级管理提供了基础数据资料,采集的数据包括1∶50万、1∶10万、1∶5万、1∶1万4种尺度。
1∶50万地形图主要用于信息系统整体图面的显示控制,是区内1990~1991年最新数据,覆盖塔里木河全流域,面积约125×104km2,数据成果为数字线划图(DLG)。1∶10万地形图主要用于遥感影像几何校正和系统信息可视化的基础地理数据,数据范围为塔里木河流域“四源一干”区域,面积23.63×104km2,最终数据成果包括数字栅格图(DRG)、数字线划图(DLG)、数字高程模型(DEM)三种产品,为20世纪七八十年代测制。1∶10万DLG数据主要作为系统查询、分析的背景数据,为快捷方便地进行信息的可视化查询管理提供底图数据;DEM数据主要用于虚拟仿真和其他子系统的分析应用;DRG数据主要用于遥感影像几何校正和快速配准。1∶5万地形图是对1∶10万数据的补充,1995~1997年测制,范围覆盖塔河干流区域,最终成果为DLG数据。塔里木河管理的重点是干流河道两岸,2002年沿干流河道范围利用航摄方法采集了1∶1万基础地形数据,数据成果包括数字正射影像图(DOM)、数字高程模型(DEM)、数字线划图(DLG)3种产品。
(三)生态环境专题图形数据
生态环境专题图形数据包括塔里木河流域生态环境调查、监测所形成的图件和由本系统遥感专题信息提取所产生的图形资料。
塔里木河干流区域是生态保护和监测的重点,对这一区域生态环境的变化分析不仅需要现实数据资料,也需要大量的历史数据。本次系统收集了干流地区1980年以来的八大类历史专题图形数据,包括草场、荒漠化、土地类型、土地资源评价、植被、土地利用、盐渍化、地貌,数据比例尺为1∶10万。另外,对在干流河道1∶1万地形测绘中所形成的1∶1万和1∶5万水系图、植被分布图和土地利用图也已入库。“四源一干”范围主要收集了1990年和2000年1∶10万土地利用专题图,20世纪80年代和90年代1∶20万水文地质图。全流域范围采集了1995年1∶50万土壤专题图、1995年1∶100万草地资源专题图、2005年塔里木河流域水文站网分布图、重要水利工程分布图等。
本系统运行后,还将不断产生和生成新的专题图数据。利用遥感技术对塔里木河流域进行植被、土地利用、沙质荒漠化、土壤盐渍化的专题信息提取,提取的专题图形数据是生态环境监测、评估的基础。由遥感图像提取的专题信息主要有:
塔里木河干流中下游植被类型与盖度图(1∶10万),从2002年开始,每两年一期;
塔里木河“四源一干”土地利用图(1∶10万),从2002年开始,每两年一期;
塔里木河干流下游土地沙质荒漠化图(1∶10万),从2002年开始,每两年一期;
塔里木河干流上游土壤盐渍化图(1∶10万),从2002年开始,每两年一期;
塔里木河干流乌斯满地区植被类型与盖度图(1∶1万),从2003年开始,每年一期;
塔里木河干流喀尔达依地区植被类型与盖度图(1∶1万),从2003年开始,每年一期;
塔里木河干流台特玛湖地区植被类型、盖度与水体面积分布图(1∶1万),从2003年开始,每年一期。
(四)GPS控制点数据
2004~2005年在四源流范围共布设了404个GPS控制点,主要用于水利工程设计、施工,河道变形监测以及遥感影像图校正。