导航:首页 > 数据分析 > 大数据技术将来可以做什么工作

大数据技术将来可以做什么工作

发布时间:2024-02-06 02:17:35

大数据毕业后去什么岗位就业

大数据就业方向主要有:互联网、物联网、人工智能、金融、体育、在线教育、交通、物流、电商等,具体岗位如下:

01大数据开发工程师

该工作岗位主要负责企业大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计与产品开发等。还要根据自己的工作安排高效、高质地完成代码编写,确保符合前端代码规范;梳理整体业务指标,开发可视化报表。

04大数据运维工程师

运维工程神亩告师的基本职责就是是负责企业服务的稳定性,确保企业服务可以24小时不间断地为用户提供服务,负责维护并确保耐友整个服务的高可用性,同时不断优化系统架构提升部署效率、优化资源利用率。

并且在出现问题时需要处理大数据平台的各类异常和故障,确保系统平台的稳定运行。

05大数据挖掘工程师

数据挖掘的工作就是负责从大量的数据中通过算法搜索隐藏于其中有用信息,然后辅助企业做出各种决策,让企业的决策智能化,自动化,从而使企业提高工作效率,减少错误决策的可能性,以在激烈的竞争中处于不败之地。



⑵ 学大数据可以从事什么职业

大数据可以从事大数据开发工程师、Hadoop开发工程师、数据挖掘、信息架构工程师、大数据分析师等等。

大数据的就业方向有哪些

1、大数据开发工程师

大数据开发工程师:统计;精简到两类指标:PV和UV;精简到一句话就是:统计各种指标的PV和UV。具体的工作并不是这么的简单,还需要从业者具备hadoop、spark、kafka、python等知识的应用。

2、Hadoop开发工程师

信息时代数据的爆发式增长,使得数据的规模越来越大,传统BI即商务智能的数据处理成本高涨,加剧了企业的负担。而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。

3、数据挖掘

数尘枝老据被清理并准备好进行检查,就可以通过数据挖掘开始搜索过程。这就是企业进行实际发现、决策和预测的搭败过程。数据挖掘在很多方面都是大数据流程的真正核心。

4、信息架构工程师

信息架构师需要懂得定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等,信息架构工程师的工作内容。

5、大数据分析师

大数据分析师需要对海量的大数据做分析、挖掘和展现,并且将其中有价值的信息提派升取出来为决策提供支持,而大数据分析师实际上就是从事这类工作的从业人员。

大数据的就业前景如何

《大数据人才报告》指出,目前全国的大数据人才仅46万,未来3-5年内将会出现高达150万的大数据人才的缺口。

当下中国互联网行业需求最多的六类人才职位为研发工程师、产品经理、人力资源、市场营销、运营和数据分析。其中需求量最大的是研发工程师,而最为稀缺的是数据分析人才。领英报告表明,高度稀缺的是数据分析人才,其供给指数最低,仅为0.05。并且其才跳槽速度也最快,平均跳槽速度为19.8个月。

根据中国商业联合会数据分析专业委员会统计,未来中国基础性数据分析人才缺口将高达到1400万,而在BAT企业招聘的职位里,60%以上都在招大数据人才。

⑶ 大数据学出来做什么工作

学大数据从事的职业常常分为大数据系统研发人员、大数据应用开发人员和大数据分析人员,常见的职业有数据分析师、数据架构师、数据挖掘工程师。

数据分析师从事行业数据搜集、整理、分析方面的工作,依据数据做出行业研究、评估和预测。作为一名数据分析师,需要掌握SPSS、STATISTIC、Eviews、SAS等数据分析工具以及数据分析的营销思维。

应用领域:

大数据技术被渗透到社会的方方面面,医疗卫生、商业分析、国家安全、食品安全、金融安全等方面。2014年,从大数据作为国家重要的战略资源和加快实现创新发展的高度,在全社会形成“用数据来说话、用数据来管理、用数据来决策、用数据来创新”的文化氛围与时代特征。

大数据科学将成为计算机科学、人工智能技术(虚拟现实、商业机器人、自动驾驶、全能的自然语言处理)、数字经济及商业、物联网应用、还有各个人文社科领域发展的核心。

⑷ 学大数据可以从事什么职业

1、数据分析师。数据分析师 是数据师的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。

作为一名数据分析师、至少需要熟练SPSS、STATISTIC、Eviews、SAS等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。总之,一个优秀的数据分析师,应该业务、管理、分析、工具、设计都不落下。

2、 数据架构师。

数据架构师是负责平台的整体数据架构设计,完成从业务模型到数据模型的设计工作 ,根据业务功能、业务模型,进行数据库建模设计,完成各种面向业务目标的数据分析模型的定义和应用开发,平台数据提取、数据挖掘及数据分析。

从事数据架构师这个职位,需要具备较强的业务理解和业务抽象能力,具备大容量事物及交易类互联网平台的数据库模型设计能力,对调度系统,元数据系统有非常深刻的认识和理解,熟悉常用的分析、统计、建模方法,熟悉数据仓库相关技术,如 ETL、报表开发,熟悉Hadoop,Hive等系统并有过实战经验。

6、Hadoop运维工程师

你需要具备的技术知识:平台大数据环境的部署维护和技术支持, 应用故障的处理跟踪及统计汇总分析,应用安全、数据的日常备份和应急恢复。

7、Hadoop开发工程师

Hadoop是一个分布式文件系统(Hadoop Distributed File System),简称HDFS。Hadoop是一个能够对大量数据进行分布式处理的软件框架, 以一种可靠、高效、可伸缩的方式进行数据处理。所以说Hadoop解决了大数据如何存储的问题,因而在大数据培训机构中是必须学习的课程。

Hadoop开发工程师需要具备的技术:基于hadoop、hive等构建数据分析平台,进行数据平台架构设计、开发分布式计算业务,应用大数据、数据挖掘、分析建模等技术,对海量数据进行挖掘,发现其潜在的关联规则,对hadoop、hive、hbase、Map/Rece相关产品进行预研、开发,Hadoop相关技术解决海量数据处理问题、大数据量的分析, Hadoop相关业务脚本的性能优化与提升,不断提高系统运行效率。

8、大数据可视化工程师

随着大数据在人们工作及日常生活中的应用,大数据可视化也改变着人类的对信息的阅读和理解方式。从网络迁徙到谷歌流感趋势,再到阿里云推出县域经济可视化产品,大数据技术和大数据可视化都是幕后的英雄。

⑸ 大数据毕业后可以从事什么工作

学大数据从事的职业常常分为大数据系统研发人员、大数据应用开发人员和大数据分析人员,常见的职业有数据分析师、数据架构师、数据挖掘工程师、数据算法工程师等等。
以下是学大数据可以从事的职业介绍:
1、数据分析师:从事行业数据搜集、整理、分析方面的工作,依据数据做出行业研究、评估和预测。需要掌握SPSS、STATISTIC、Eviews、SAS等数据分析工具以及数据分析的营销思维。
2、数据架构师:负责平台的整体数据架构设计,完成从业务模型到数据模型的设计工作,根据业务功能、业务模型,进行数据库建模设计,完成各种面向业务目标的数据分析模型的定义和应用开发,平台数据提取、数据挖掘及数据分析。
3、数据应用师:用常人能理解的语言表述出数据所蕴含的信息,并根据数据分析结论推动企业内部做出调整。将数据还原到产品中,为产品所用。
4、数据挖掘工程师:从大量的数据中通过算法搜索隐藏于其中的信息,使企业决策智能化、自动化,提高企业工作效率,减少错误决策的可能性。需要具备深厚的统计学基础,需要熟悉R、SAS、 SPSS等统计分析软件。
5、数据算法工程师:负责大数据产品数据挖掘算法与模型部分的设计,制定数据建模、数据处理和数据安全等架构规范并落地实施。需要具备扎实的数据挖掘基础知识,精通机器学习、数学统计常用算法,掌握常见分布式计算框架和技术原理,如Hadoop、MapRece、 Yarn、Storm、Spark等;熟悉Linux操作系统和Shell编程,至少熟练掌握一门编程语言。

⑹ 大数据专业毕业后做什么工作

1、大数据开发工程师
主要负责数据模型的ETL开发、数据平台建设;面向业务的数据提取、分析、报表、挖掘等系统设计和开发工作。
岗位要求:
精通常用的数据结构和算法,理解面向对象设计的基本原则,熟悉常用的设计模式;
掌握Hadoop生态体系框架,包括Hadoop、Hive、Spark、Storm、Flink、ElasticSearch、HBase等;
2、大数据运维工程师
主要负责数据平台的集群管理,机器优化,集群监控等;对现有集群的优化和性能调优,满足不断增长的业务需求等。
岗位要求:
熟悉主流开源数据组件,包括但不限于HADOOP、Hive、HBase、ZK、Spark、Flink、Flume、ElasticSearch and etc;深入理解Hadoop各组件的原理和实现;熟悉分布式原理、分布式系统设计等。
3、大数据架构师
主要负责大数据基础框架的整体架构设计,结合公司实际业务情况进行技术选型;负责数据存储和计算平台的整体评估、设计以及核心功能模块的开发等。
岗位要求:
熟悉常用的数据结构和算法;具备丰富的开发经验,了解主流的大数据技术框架组件,包括但不限于Hadoop、Spark、Storm、Flink等。
4、大数据分析师
大数据分析方向的岗位,则主要以数据分析挖掘为主,通常需要负责常规业务数据分析需求开发,用户画像构建,推荐算法实现等。
岗位要求:
熟悉数据仓库理论、数据挖掘理论基础,熟悉常用机器学习算法(如逻辑回归、神经网络、决策树、贝叶斯等);对Hadoop和Spark生态当中的主流技术组件,有相应程度的了解。

阅读全文

与大数据技术将来可以做什么工作相关的资料

热点内容
一根数据线多少钱oppo 浏览:622
费用较高的网络类型是 浏览:570
怎么查看一个网站的后台 浏览:967
核桃编程有什么用处 浏览:796
如何用文本把数据导入打印系统 浏览:629
电信5s3g能升级4g吗 浏览:153
linux内核缺页异常 浏览:258
word2010取消画布 浏览:943
javajframe更新界面 浏览:63
机械硬盘u盘放不进4g文件 浏览:81
linux下如何复制黏贴 浏览:479
苹果安装ipa文件 浏览:757
5sqq分享视频文件 浏览:67
华为各版本系统 浏览:145
编程中的封装性是什么意思 浏览:43
程序设计毕业答辩ppt 浏览:742
美版5s有锁版本好 浏览:200
解压文件电脑很卡 浏览:551
现金比率在哪个数据库找到 浏览:682
c获取路径下所有文件 浏览:478

友情链接